Skip to main content

Recent Advances in DNA Repair Pathway and Its Application in Personalized Care of Metastatic Castration-Resistant Prostate Cancer (mCRPC)

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Prostate cancer (PCa) is one of the common malignancies in male adults. In the era of precision medicine, many other novel agents targeting advanced prostate cancer, especially metastatic castration-resistant prostate cancer (mCRPC), are currently being evaluated. Among all these candidate therapies, poly-ADP ribose polymerase (PARP) inhibitors targeting DNA damage response (DDR) pathway has proven improving survival outcomes in clinical trials. In this review, we focus on recent advances in biology and clinical implication of DDR pathway and aim to discuss the latest results in advanced prostate cancer, especially mCRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Fitzmaurice C, Abate D, Abbasi N et al (2019) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 5(12):1749–1768

    PubMed Central  PubMed  Google Scholar 

  3. Parker C, Lewington V, Shore N et al (2018) Targeted alpha therapy, an emerging class of cancer agents: a review. JAMA Oncol 4(12):1765–1772

    PubMed  Google Scholar 

  4. Ritch CR, Cookson MS (2016) Advances in the management of castration resistant prostate cancer. BMJ (Clinical Research ed) 355:i4405

    Google Scholar 

  5. Nuhn P, De Bono JS, Fizazi K et al (2019) Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol 75(1):88–99

    PubMed  Google Scholar 

  6. Almassi N, Reichard C, Li J et al (2018) HSD3B1 and response to a nonsteroidal CYP17A1 inhibitor in castration-resistant prostate cancer. JAMA Oncol 4(4):554–557

    PubMed  Google Scholar 

  7. Miller K, Carles J, Gschwend JE et al (2018) The Phase 3 COU-AA-302 Study of abiraterone acetate plus prednisone in men with chemotherapy-naïve metastatic castration-resistant prostate cancer: stratified analysis based on pain, prostate-specific antigen, and gleason score. Eur Urol 74(1):17–23

    CAS  PubMed  Google Scholar 

  8. Fizazi K, Tran N, Fein L et al (2017) Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 377(4):352–360

    CAS  PubMed  Google Scholar 

  9. Saito K, Fujii Y (2018) Antitumor activity and safety of enzalutamide after abiraterone acetate: seeking the optimal treatment sequence for castration-resistant prostate cancer patients. Eur Urol 74(1):46–47

    CAS  PubMed  Google Scholar 

  10. Anker MS, Lehmann LH, Anker SD (2018) Enzalutamide in castration-resistant prostate cancer. N Engl J Med 379(14):1380

    PubMed  Google Scholar 

  11. Antonarakis ES, Tagawa ST, Galletti G et al (2017) Randomized, noncomparative, phase II trial of early switch from docetaxel to cabazitaxel or vice versa, with integrated biomarker analysis, in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. J Clin Oncol 35(28):3181–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rouyer M, Oudard S, Joly F et al (2019) Overall and progression-free survival with cabazitaxel in metastatic castration-resistant prostate cancer in routine clinical practice: the FUJI cohort. Br J Cancer 121(12):1001–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen AR, Massard C, Ott PA et al (2018) Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol 29(8):1807–1813

    CAS  PubMed  Google Scholar 

  14. Gulley JL, Madan RA, Pachynski R et al (2017) Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J Natl Cancer Inst 109(4):djw261

    PubMed Central  Google Scholar 

  15. Lang SH, Swift SL, White H et al (2019) A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol 55(3):597–616

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashworth A, Lord CJ (2018) Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol 15(9):564–576

    CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  18. Chang HHY, Pannunzio NR, Adachi N et al (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631

    CAS  PubMed  Google Scholar 

  20. Her J, Bunting SF (2018) How cells ensure correct repair of DNA double-strand breaks. J Biol Chem 293(27):10502–10511

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlacher K, Christ N, Siaud N et al (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145(4):529–542

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Clauson C, Schärer OD, Niedernhofer L (2013) Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 5(10):a012732

    PubMed  PubMed Central  Google Scholar 

  23. Zhao W, Steinfeld JB, Liang F et al (2017) BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550(7676):360–365

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rottenberg S, Jaspers JE, Kersbergen A et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105(44):17079–17084

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Moynahan ME, Cui TY, Jasin M (2001) Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61(12):4842–4850

    CAS  PubMed  Google Scholar 

  26. Alli E, Sharma VB, Hartman AR et al (2011) Enhanced sensitivity to cisplatin and gemcitabine in Brca1-deficient murine mammary epithelial cells. BMC Pharmacol 11:7

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467(7316):678–683

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuchenbaecker KB, Mcguffog L, Barrowdale D et al (2017) Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 109(7):djw302

    PubMed Central  Google Scholar 

  29. Antoniou A, Pharoah PD, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822

    CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  32. Teixeira LA, Candido Dos Reis FJ (2020) Immunohistochemistry for the detection of BRCA1 and BRCA2 proteins in patients with ovarian cancer: a systematic review. J Clin Pathol 73(4):191–196

    PubMed  Google Scholar 

  33. Li M, Yu X (2013) Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23(5):693–704

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rezaeian AH, Li CF, Wu CY et al (2017) A hypoxia-responsive TRAF6-ATM-H2AX signalling axis promotes HIF1α activation, tumorigenesis and metastasis. Nat Cell Biol 19(1):38–51

    CAS  PubMed  Google Scholar 

  35. Miller RM, Nworu C, Mckee L et al (2020) Development of an immunohistochemical assay to detect the ataxia-telangiectasia mutated (ATM) protein in gastric carcinoma. Appl Immunohistochem Mol Morphol 28(4):303–310

    CAS  PubMed  Google Scholar 

  36. Jette NR, Radhamani S, Arthur G et al (2019) Combined poly-ADP ribose polymerase and ataxia-telangiectasia mutated/Rad3-related inhibition targets ataxia-telangiectasia mutated-deficient lung cancer cells. Br J Cancer 121(7):600–610

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Foote KM, Nissink JWM, Mcguire T et al (2018) Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) Kinase with application as an anticancer agent. J Med Chem 61(22):9889–9907

    CAS  PubMed  Google Scholar 

  38. Bradbury A, Hall S, Curtin N et al (2019) Targeting ATR as cancer therapy: a new era for synthetic lethality and synergistic combinations? Pharmacol Ther 207:107450

    PubMed  Google Scholar 

  39. Pritchard CC, Mateo J, Walsh MF et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375(5):443–453

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bancroft EK, Page EC, Castro E et al (2014) Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol 66(3):489–499

    PubMed  PubMed Central  Google Scholar 

  41. Castro E, Goh C, Olmos D et al (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 31(14):1748–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Na R, Zheng SL, Han M et al (2017) Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 71(5):740–747

    CAS  PubMed  Google Scholar 

  43. Castro E, Romero-Laorden N, Del Pozo A et al (2019) PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol 37(6):490–503

    CAS  PubMed  Google Scholar 

  44. Carter H, Helfand B, Mamawala M et al (2019) Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer. Eur Urol 75(5):743–749

    CAS  PubMed  Google Scholar 

  45. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161(5):1215–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abida W, Armenia J, Gopalan A et al (2017) Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol 2017:10

    Google Scholar 

  47. Hart SN, Ellingson MS, Schahl K et al (2016) Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open 6(4):e010332

    PubMed  PubMed Central  Google Scholar 

  48. Beltran H, Yelensky R, Frampton GM et al (2013) Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 63(5):920–926

    CAS  PubMed  Google Scholar 

  49. Grasso CS, Wu YM, Robinson DR et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wl K (2015) PARPs and ADP-ribosylation: 50 years … and counting. Mol Cell 58(6):902–910

    Google Scholar 

  51. El-Khamisy SF, Masutani M, Suzuki H et al (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31(19):5526–5533

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    PubMed  PubMed Central  Google Scholar 

  53. Hegan DC, Lu Y, Stachelek GC et al (2010) Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc Natl Acad Sci U S A 107(5):2201–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schiewer MJ, Knudsen KE (2014) Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12(8):1069–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Langelier MF, Eisemann T, Riccio AA et al (2018) PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr Opin Struct Biol 53:187–198

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Helleday T (2016) PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Ann Oncol 27(5):755–757

    CAS  PubMed  Google Scholar 

  57. Kaufman B, Ronnie S-F, Schmutzler Rita K et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244–250

    CAS  PubMed  Google Scholar 

  58. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mateo J, Porta N, Bianchini D et al (2019) Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21(1):162–174

    PubMed  Google Scholar 

  60. Lafargue CJ, Molin GZD, Sood AK et al (2019) Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol 20(1):e15–e28

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Clarke N, Wiechno P, Alekseev B et al (2018) Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 19(7):975–986

    CAS  PubMed  Google Scholar 

  62. Heyman B, Jamieson C (2019) To PARP or not to PARP?-Toward sensitizing acute myeloid leukemia stem cells to immunotherapy. EMBO J 38(21):e103479

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Césaire M, Thariat J, Candéias SM et al (2018) Combining PARP inhibition, radiation, and immunotherapy: a possible strategy to improve the treatment of cancer? Int J Mol Sci 19(12):3793

    PubMed Central  Google Scholar 

  64. Evan Y, Yu MC, Margitta R et al (2019) Keynote-365 cohort a: pembrolizumab (pembro) plus olaparib in docetaxel-pretreated patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol 37(7_suppl):145

    Google Scholar 

  65. Karzai F, Vanderweele D, Madan RA et al (2018) Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer 6(1):141

    PubMed  PubMed Central  Google Scholar 

  66. Sabatucci I, Maltese G, Lepori S et al (2018) Rucaparib: a new treatment option for ovarian cancer. Expert Opin Pharmacother 19(7):765–771

    CAS  PubMed  Google Scholar 

  67. Abida W, Bryce AH, Vogelzang NJ et al (2019) Genomic characteristics of deleterious BRCA1 and BRCA2 alterations and associations with baseline clinical factors in patients with metastatic castration-resistant prostate cancer (mCRPC) enrolled in TRITON2. J Clin Oncol 37(15_suppl):5031

    Google Scholar 

  68. Ison G, Howie LJ, Amiri-Kordestani L et al (2018) FDA Approval summary: niraparib for the maintenance treatment of patients with recurrent ovarian cancer in response to platinum-based chemotherapy. Clin Cancer Res 24(17):4066–4071

    CAS  PubMed  Google Scholar 

  69. Sandhu SK, Schelman WR, Wilding G et al (2013) The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14(9):882–892

    CAS  PubMed  Google Scholar 

  70. Smith MR, Kaur SS, Kevin KW et al (2019) Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): preliminary results of GALAHAD. J Clin Oncol 37(7_suppl):202

    Google Scholar 

  71. Boussios S, Karihtala P, Moschetta M et al (2020) Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest New Drugs 38(1):181–193

    PubMed  Google Scholar 

  72. Tuli R, Shiao SL, Nissen N et al (2019) A phase 1 study of veliparib, a PARP-1/2 inhibitor, with gemcitabine and radiotherapy in locally advanced pancreatic cancer. EBioMedicine 40:375–381

    PubMed  PubMed Central  Google Scholar 

  73. Owonikoko TK, Dahlberg SE, Sica GL et al (2019) Randomized phase II trial of cisplatin and etoposide in combination with veliparib or placebo for extensive-stage small-cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol 37(3):222–229

    CAS  PubMed  Google Scholar 

  74. Loibl S, O’shaughnessy J, Untch M et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19(4):497–509

    CAS  PubMed  Google Scholar 

  75. Hussain M, Anthony CM, Slovin Susan F et al (2012) Pilot study of veliparib (ABT-888) with temozolomide (TMZ) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 30(5_suppl):224–224

    Google Scholar 

  76. Pahuja S, Joseph AL, Prakash BC et al (2015) Preliminary activity of veliparib (V) in BRCA2-mutated metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 33(7_suppl):170

    Google Scholar 

  77. Hussain M, Daignault-Newton S, Twardowski PW et al (2018) Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: results from NCI 9012. J Clin Oncol 36(10):991–999

    CAS  PubMed  Google Scholar 

  78. Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoy SM (2018) Talazoparib: first global approval. Drugs 78(18):1939–1946

    PubMed  Google Scholar 

  80. De Bono JS, Higano Celestia S, Fred S et al (2019) TALAPRO-1: an open-label, response rate phase II study of talazoparib (TALA) in men with DNA damage repair (DDR) defects and metastatic castration-resistant prostate cancer (mCRPC) who previously received taxane-based chemotherapy (CT) and progressed on greater than or equal to one novel hormonal therapy (NHT). J Clin Oncol 37(7_suppl):TPS342–TPS342

    Google Scholar 

  81. Friedlander M, Meniawy T, Markman B et al (2019) Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol 20(9):1306–1315

    CAS  PubMed  Google Scholar 

  82. Mcpherson LA, Shen Y, Ford JM (2014) Poly (ADP-ribose) polymerase inhibitor LT-626: Sensitivity correlates with MRE11 mutations and synergizes with platinums and irinotecan in colorectal cancer cells. Cancer Lett 343(2):217–223

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, C., Mao, S., Jiang, H. (2020). Recent Advances in DNA Repair Pathway and Its Application in Personalized Care of Metastatic Castration-Resistant Prostate Cancer (mCRPC). In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics