Skip to main content

Applications of Network Analysis in Biomedicine

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

The abundance of high-throughput data and technical refinements in graph theories have allowed network analysis to become an effective approach for various medical fields. This chapter introduces co-expression, Bayesian, and regression-based network construction methods, which are the basis of network analysis. Various methods in network topology analysis are explained, along with their unique features and applications in biomedicine. Furthermore, we explain the role of network embedding in reducing the dimensionality of networks and outline several popular algorithms used by researchers today. Current literature has implemented different combinations of topology analysis and network embedding techniques, and we outline several studies in the fields of genetic-based disease prediction, drug–target identification, and multi-level omics integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson W et al (2019) To embed or not: network embedding as a paradigm in computational biology. Front Genet 10

    Google Scholar 

  2. Zhang H et al (2019) Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks. Math Biosci 315:108229

    Article  CAS  PubMed  Google Scholar 

  3. Bhasuran B, Natarajan J (2018) Automatic extraction of gene-disease associations from literature using joint ensemble learning. PLoS One 13(7):–e0200699

    Google Scholar 

  4. Guo Y et al (2013) Dissecting disease inheritance modes in a three-dimensional protein network challenges the “Guilt-by-Association” principle. Am J Hum Genet 93(1):78–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peng J, Guan J, Shang X (2019) Predicting Parkinson’s disease genes based on Node2vec and autoencoder. Front Genet 10

    Google Scholar 

  6. Ata SK et al (2018) Integrating node embeddings and biological annotations for genes to predict disease-gene associations. BMC Syst Biol 12(S9)

    Google Scholar 

  7. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  PubMed  Google Scholar 

  8. Stuart JM (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  CAS  PubMed  Google Scholar 

  9. Nagrecha S, Lingras PJ, Chawla NV (2013) Comparison of gene co-expression networks and bayesian networks. In: Intelligent information and database systems. Springer, Berlin, Heidelberg

    Google Scholar 

  10. Ma X et al (2018) Co-expression gene network analysis and functional module identification in bamboo growth and development. Front Genet 9:574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Su C et al (2013) Using Bayesian networks to discover relations between genes, environment, and disease. BioData Mining 6(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Friedman N, Nachman I, Peér D (1999) Learning bayesian network structure from massive datasets: the “sparse candidate” algorithm. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  14. Murphy K (2001) The bayes net toolbox for matlab. Comput Sci Stat 33(2):1024–1034

    Google Scholar 

  15. Huang T et al (2010) Using GeneReg to construct time delay gene regulatory networks. BMC Res Notes 3(1):142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sakamoto Y, Ishiguro M, Kitagawa GJD (1986) Akaike information criterion statistics. D. Reidel, The Netherlands, p 81

    Google Scholar 

  17. Guimerà R, Sales-Pardo M, Amaral LAN (2007) Module idesdntification in bipartite and directed networks. Phys Rev E 76(3):036102

    Article  CAS  Google Scholar 

  18. Nikolayeva I, Guitart Pla O, Schwikowski B (2018) Network module identification—A widespread theoretical bias and best practices. Methods 132:19–25

    Article  CAS  PubMed  Google Scholar 

  19. Ideker T et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl_1):S233–S240

    Article  PubMed  Google Scholar 

  20. Bakir-Gungor B, Sezerman OU (2011) A new methodology to associate SNPs with human diseases according to their pathway related context. PloS One 6(10):e26277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia P et al (2010) dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks. Bioinformatics 27(1):95–102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chuang HY et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol:3(1)

    Google Scholar 

  23. Hormozdiari F et al (2015) The discovery of integrated gene networks for autism and related disorders. Genome Res 25(1):142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q et al (2015) EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics 31(15):2591–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith CL et al (2014) Identification of a human neonatal immune-metabolic network associated with bacterial infection. Nat Commun 5:4649

    Article  CAS  PubMed  Google Scholar 

  26. Adamcsek B et al (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023

    Article  CAS  PubMed  Google Scholar 

  27. Kashtan N et al (2004) Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11):1746–1758

    Article  CAS  PubMed  Google Scholar 

  28. Wernicke S, Rasche FJB (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22(9):1152–1153

    Article  CAS  PubMed  Google Scholar 

  29. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  30. Neal Z (2015) Making big communities small: using network science to understand the ecological and behavioral requirements for community social capital. Am J Community Psychol 55(3–4):369–380

    Article  PubMed  Google Scholar 

  31. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

  32. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  33. Fredman ML, Tarjan RE (1987) Fibonacci heaps and their uses in improved network optimization algorithms. J ACM (JACM) 34(3):596–615

    Article  Google Scholar 

  34. Thorup M (2004) Integer priority queues with decrease key in constant time and the single source shortest paths problem. J Comput Syst Sci 69(3):330–353

    Article  Google Scholar 

  35. Gabow HN (1983) Scaling algorithms for network problems. In: 24th Annual Symposium on Foundations of Computer Science (sfcs 1983). IEEE

    Google Scholar 

  36. Oliver SJN (2000) Proteomics: guilt-by-association goes global. Nature 403(6770):601

    Article  CAS  PubMed  Google Scholar 

  37. Arabidopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607

    Article  PubMed Central  CAS  Google Scholar 

  38. Mukhtar MS et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu X et al (2008) Network-based global inference of human disease genes. Mol Syst Biol 4(1)

    Google Scholar 

  40. Gillis J, Pavlidis P (2012) “Guilt by Association” is the exception rather than the rule in gene networks. PLOS Computat Biol 8(3):e1002444

    Article  CAS  Google Scholar 

  41. Blanchard P, Volchenkov D (2011) Fair and biased random walks on undirected graphs and related entropies. Birkhäuse, Boston, Basel

    Book  Google Scholar 

  42. Seah CS et al (2017) An enhanced topologically significant directed random walk in cancer classification using gene expression datasets. Saudi J Biol Sci 24(8):1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roessler S et al (2015) Integrative genomic and transcriptomic characterization of matched primary and metastatic liver and colorectal carcinoma. Int J Biol Sci 11(1):88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Seah CS, Kasim S, Mohamad MS (2017) Specific tuning parameter for directed random walk algorithm cancer classification. Interaction 114:1500

    Google Scholar 

  45. Suki B, Frey U (2017) A time-varying biased random walk approach to human growth. Sci Rep 7(1):7805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yang K et al (2019) HerGePred: heterogeneous network embedding representation for disease gene prediction. IEEE J Biomed Health Inform 23(4):1805–1815

    Article  PubMed  Google Scholar 

  47. Kloster K, Gleich DF (2014) Heat kernel based community detection. arXiv e-prints

    Google Scholar 

  48. Chung F (2007) The heat kernel as the pagerank of a graph. Proc Natl Acad Sci 104(50):19735–19740

    Article  CAS  PubMed Central  Google Scholar 

  49. Paull EO et al (2013) Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics 29(21):2757–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laenen G et al (2013) Finding the targets of a drug by integration of gene expression data with a protein interaction network. Mol BioSyst 9(7):1676–1685

    Article  CAS  PubMed  Google Scholar 

  51. Nitsch D et al (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11(1):460

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vandin F (2011) et al Discovery of mutated subnetworks associated with clinical data in cancer Pac Symp Biocomputing 2012. 2011, 55–66

    Google Scholar 

  53. Chen H et al (2018) A tutorial on network embeddings

    Google Scholar 

  54. Mikolov T, et al (2013) Efficient estimation of word representations in vector space

    Google Scholar 

  55. Du J et al (2019) Gene2vec: distributed representation of genes based on co-expression. BMC Genomics 20(1):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. arXiv e-prints

    Google Scholar 

  57. Kim M, Baek SH, Song M (2018) Relation extraction for biological pathway construction using node2vec. BMC Bioinformatics 19(8):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge discovery and data mining. ACM

    Google Scholar 

  59. Zong N, Wong RSN, Ngo V (2019) Tripartite network-based repurposing method using deep learning to compute similarities for drug-target prediction. In: Vanhaelen Q (ed) Computational methods for drug repurposing. Springer New York, New York, NY, pp 317–328

    Chapter  Google Scholar 

  60. Zong N et al (2017) Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33(15):2337–2344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Deng L, Wang J, Zhang J (2019) Predicting gene ontology function of human MicroRNAs by integrating multiple networks. Front Genet 10:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang J et al (2015) Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee

    Google Scholar 

  63. Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM: San Francisco, CA, USA. p. 1225–1234

    Google Scholar 

  64. Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14):i190–i198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ribeiro LF, Saverese PH, Figueiredo DR (2017) struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM

    Google Scholar 

  66. Moffat JG et al (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16(8):531

    Article  CAS  PubMed  Google Scholar 

  67. Lee I, Nam H (2018) Identification of drug-target interaction by a random walk with restart method on an interactome network. BMC Bioinformatics 19(8):208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yildirim M et al (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126

    Article  CAS  PubMed  Google Scholar 

  69. Yamanishi Y et al (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12):i246–i254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu Z et al (2017) Seq2seq fingerprint: an unsupervised deep molecular embedding for drug discovery. In: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. ACM

    Google Scholar 

  71. Zeng X et al (2019) deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35(24):5191–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tillquist RC, Lladser ME (2019) Low-dimensional representation of genomic sequences. J Math Biol 79(1):1–29

    Article  PubMed  Google Scholar 

  73. Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: International symposium on computer and information sciences. Springer, Berlin, Heidelberg

    Google Scholar 

  74. Raghavan UN (2007) Albert R, Kumara S, Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106

    Article  CAS  Google Scholar 

  75. Rosvall M, Bergstrom CT (2011) Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS One 6(4):e18209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blondel VD et al (2008) Fast unfolding of communities in large networks. J Stat Mech 10:P10008

    Article  Google Scholar 

  77. Gosline SJ, Oh C, Fraenkel EJB (2014) SAMNetWeb: identifying condition-specific networks linking signaling and transcription. Bioinformatics 31(7):1124–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wachter A, Beißbarth TJB (2015) pwOmics: an R package for pathway-based integration of time-series omics data using public database knowledge. Bioinformatics 31(18):3072–3074

    Article  CAS  PubMed  Google Scholar 

  79. Karnovsky A et al (2011) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28(3):373–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wanichthanarak K, Fahrmann JF, Grapov DJBI (2015 Sep 7) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10(Suppl 4):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gevaert O et al (2013) Identification of ovarian cancer driver genes by using module network integration of multi-omics data. Interface Focus 3(4):20130013

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang Q, Burdette JE, Wang J-P (2014) Integrative network analysis of TCGA data for ovarian cancer. BMC Syst Biol 8(1):1338

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Huang, T. (2020). Applications of Network Analysis in Biomedicine. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics