Skip to main content

The Clinical Significance of Microsatellite Instability in Precision Treatment

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

The recent years have seen the high heterogeneity of colorectal cancer (CRC) receiving increasing attention and being revealed step by step. Microsatellite instability (MSI), characterized by the dysfunction of mismatch repair gene, plays an important role in the heterogeneity of colorectal cancer. MSI status can be identified by immunohistochemistry for MMR protein such as MLH1, MSH2, PMS2, and MSH6 or PCR-based array for MMR gene. Recent studies have revealed MSI status is the only biomarker that can be used to select patients with high-risk stage II colon cancer for adjuvant chemotherapy. Furthermore, it always indicated better stage-adjusted survival when compared with microsatellite stable (MSS) tumors. For immunotherapy, patients with MSI tumors exhibited significant response to anti-PD-1 inhibitors after the failure to conventional therapy. In this chapter, we discuss the detection methods of MSI, the prognostic value of MSI, and its clinical guiding value in the management of precision therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL et al (2017) Colorectal cancer statistics. CA Cancer J Clin 67(3):177–193

    Article  PubMed  Google Scholar 

  2. Athauda A et al (2019) Integrative molecular analysis of colorectal cancer and gastric cancer: what have we learnt?, Cancer Treat Rev. 73:31–40

    Google Scholar 

  3. Hutchins G et al (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29(10):1261–1270

    Article  PubMed  Google Scholar 

  4. Sargent DJ et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28(20):3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto H, Imai K (2015) Microsatellite instability: an update. Arch Toxicol 89(6):899–921

    Article  CAS  PubMed  Google Scholar 

  6. Kim KJ et al (2014) Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol 45(2):285–293

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto H et al (2014) An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa. World J Gastroenterol 20(14):3927–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7(3):153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim TM, Laird PW, Park PJ (2013) The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155(4):858–868

    Article  CAS  PubMed  Google Scholar 

  10. Li GM (2013) Decoding the histone code: role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy. Cancer Res 73(21):6379–6383

    Article  CAS  PubMed  Google Scholar 

  11. Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12(31):4943–4950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boland CR et al (1998) A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257

    CAS  PubMed  Google Scholar 

  13. Rampino N et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967

    Article  CAS  PubMed  Google Scholar 

  14. Perucho M, Boland CR et al (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    Google Scholar 

  15. Ionov Y et al (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561

    Article  CAS  PubMed  Google Scholar 

  16. Moertel CG et al (1995) Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report. Ann Intern Med 122(5):321–326

    Article  CAS  PubMed  Google Scholar 

  17. Koessler T et al (2008) Common variants in mismatch repair genes and risk of colorectal cancer. Gut 57(8):1097–1101

    Article  CAS  PubMed  Google Scholar 

  18. Lynch HT et al (2006) Phenotypic and genotypic heterogeneity in the Lynch syndrome: diagnostic, surveillance and management implications. Eur J Hum Genet 14(4):390–402

    Article  CAS  PubMed  Google Scholar 

  19. Smyth EC et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197–1203

    Article  PubMed  Google Scholar 

  20. Andre T et al (2015) Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 33(35):4176–4187

    Article  CAS  PubMed  Google Scholar 

  21. Tajima Y et al (2018) Prevalence and molecular characteristics of defective mismatch repair epithelial ovarian cancer in a Japanese hospital-based population. Jpn J Clin Oncol 48(8):728–735

    Article  PubMed  Google Scholar 

  22. Parikh AR et al (2019) MAVERICC, a randomized, biomarker-stratified, phase II study of mFOLFOX6-bevacizumab versus FOLFIRI-bevacizumab as first-line chemotherapy in metastatic colorectal cancer. Clin Cancer Res 25(10):2988–2995

    Article  CAS  PubMed  Google Scholar 

  23. Li P et al (2013) ERCC1, defective mismatch repair status as predictive biomarkers of survival for stage III colon cancer patients receiving oxaliplatin-based adjuvant chemotherapy. Br J Cancer 108(6):1238–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tabernero J et al (2015) Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 16(8):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  26. Le DA-O et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le DT et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Overman MJ et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Omuro A et al (2018) xNivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncology 20(5):674–686

    Article  CAS  PubMed  Google Scholar 

  30. Le DT et al (2016) Programmed death-1 blockade in mismatch repair deficient colorectal cancer. N Engl J Med 34(15_suppl):103–103

    Google Scholar 

  31. Overman MJ et al (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. Clin Oncol 36(8):773–779

    Article  CAS  Google Scholar 

  32. Andre T et al (2017) Combination of nivolumab (nivo) + ipilimumab (ipi) in the treatment of patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC): CheckMate 142 study. J Clin Oncol 35:3531–3531

    Article  Google Scholar 

  33. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Z., Chen, X., Liu, C., Cui, L. (2020). The Clinical Significance of Microsatellite Instability in Precision Treatment. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics