Skip to main content

Research Progress in Pathogenesis of Total Anomalous Pulmonary Venous Connection

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Congenital heart defect (CHD) is one of the most common birth defects and the leading course of infant mortality. Total anomalous pulmonary venous connection (TAPVC) is a rare type of cyanotic which accounting for approximately 1–3% of congenital heart disease cases. Based on where the anomalous veins drain, TAPVC can be divided into four subtypes: supracardiac, cardiac, infracardiac, and mixed. In TAPVC, all pulmonary veins fail to link to the left atrium correctly but make abnormal connections to the right atrium or systemic venous system. The mortality of TAPVC patients without proper intervention is nearly 80% in the first year of life and 50% of them died within 3 months after birth. However, the pathogenesis and mechanism of TAPVC remains elusive. In this chapter, we systematically review the epidemiology, anatomy, and pathophysiology of TAPVC and give an overview of the research progress of TAPVC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pediatric Cardiac Genomics C, Gelb B, Brueckner M et al (2013) The congenital heart disease genetic network study: rationale, design, and early results. Circ Res 112(4):698–706

    Article  Google Scholar 

  2. Jin SC, Homsy J, Zaidi S et al (2017) Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 49(11):1593–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi G, Zhu Z, Chen J et al (2017) Total anomalous pulmonary venous connection: the current management strategies in a pediatric cohort of 768 patients. Circulation 135(1):48–58

    Article  PubMed  Google Scholar 

  4. Mai CT, Riehle-Colarusso T, O’Halloran A et al (2012) Selected birth defects data from population-based birth defects surveillance programs in the United States, 2005-2009: featuring critical congenital heart defects targeted for pulse oximetry screening. Birth Defects Res A Clin Mol Teratol 94(12):970–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seale AN, Uemura H, Webber SA et al (2010) Total anomalous pulmonary venous connection: morphology and outcome from an international population-based study. Circulation 122(25):2718–2726

    Article  PubMed  Google Scholar 

  6. Nurkalem Z, Gorgulu S, Eren M, Bilal MS (2006) Total anomalous pulmonary venous return in the fourth decade. Int J Cardiol 113(1):124–126

    Article  PubMed  Google Scholar 

  7. Correa-Villasenor A, Ferencz C, Boughman JA, Neill CA (1991) Total anomalous pulmonary venous return: familial and environmental factors. The Baltimore-Washington Infant Study Group. Teratology 44(4):415–428

    Article  CAS  PubMed  Google Scholar 

  8. Siddharth CB, Yadav M, Bhoje A, Hote MP (2018) Dual drainage total anomalous pulmonary venous connection: a rare mixed variant. Asian Cardiovasc Thorac Ann 26(4):305–307

    Article  PubMed  Google Scholar 

  9. van den Berg G, Moorman AF (2011) Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One 6(7):e22055

    Article  PubMed  PubMed Central  Google Scholar 

  10. DeRuiter MC, Gittenberger-De Groot AC, Wenink AC, Poelmann RE, Mentink MM (1995) In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec 243(1):84–92

    Article  CAS  PubMed  Google Scholar 

  11. Douglas YL, Jongbloed MR, Deruiter MC, Gittenberger-de Groot AC (2011) Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int J Cardiol 147(1):13–24

    Article  PubMed  Google Scholar 

  12. Douglas YL, Jongbloed MR, den Hartog WC et al (2009) Pulmonary vein and atrial wall pathology in human total anomalous pulmonary venous connection. Int J Cardiol 134(3):302–312

    Article  PubMed  Google Scholar 

  13. Bleyl SB, Botto LD, Carey JC et al (2006) Analysis of a Scottish founder effect narrows the TAPVR-1 gene interval to chromosome 4q12. Am J Med Genet A 140(21):2368–2373

    Article  PubMed  Google Scholar 

  14. Bleyl S, Nelson L, Odelberg SJ et al (1995) A gene for familial total anomalous pulmonary venous return maps to chromosome 4p13-q12. Am J Hum Genet 56(2):408–415

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bleyl SB, Saijoh Y, Bax NA et al (2010) Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet 19(7):1286–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cinquetti R, Badi I, Campione M et al (2008) Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum Mutat 29(4):468–474

    Article  CAS  PubMed  Google Scholar 

  17. Nash D, Arrington CB, Kennedy BJ et al (2015) Shared segment analysis and next-generation sequencing implicates the retinoic acid signaling pathway in total anomalous pulmonary venous return (TAPVR). PLoS One 10(6):e0131514

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arimura T, Bos JM, Sato A et al (2009) Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol 54(4):334–342

    Article  CAS  PubMed  Google Scholar 

  19. Degenhardt K, Singh MK, Aghajanian H et al (2013) Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 19(6):760–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Yang S, Pu Z et al (2017) Whole-exome sequencing identifies SGCD and ACVRL1 mutations associated with total anomalous pulmonary venous return (TAPVR) in Chinese population. Oncotarget 8(17):27812–27819

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shi X, Huang T, Wang J et al (2018) Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine 38:217–227

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shi X, Cheng L, Jiao X et al (2018) Rare copy number variants identify novel genes in sporadic total anomalous pulmonary vein connection. Front Genet 9:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, X., Lu, Y., Sun, K. (2020). Research Progress in Pathogenesis of Total Anomalous Pulmonary Venous Connection. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics