Skip to main content

DNA Methylation in Atrial Fibrillation and Its Potential Role in Precision Medicine

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Atrial fibrillation (AF), a common arrhythmia, can cause many serious consequences, including stroke and even death. The pathological mechanism of AF is very complicated. Epigenetic mechanisms, especially DNA methylation, contribute to the pathogenesis and maintenance of AF. DNA methylation is an important part of epigenetic and plays a significant role in human physiology and pathology. AF patients possess specific methylation sites (e.g., Pitx2c, RASSF1A, SURs, SERCA2a, and LINC00472), which have potential values of being biomarkers and underlie the diagnosis and prognosis of AF. These methylation sites can also benefit accurate treatment of AF. With deeper understanding into the epigenetic mechanisms of AF, the precision medicine for AF has also developed rapidly. In the future, DNA methylation omics and other research methods will be integrated to explore the epigenetic mechanisms in AF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozturk C, Aparci M, Cakmak T, Metin S, Balta S, Sen A (2014) Atrial fibrillation presented with syncope in a jet pilot during daily briefing on squadron. Aviat Space Environ Med 85(9):965–969

    Article  PubMed  Google Scholar 

  2. Canpolat U, Oto A, Yorgun H et al (2015) Association of plasma fibronectin level with left atrial electrical and structural remodelling in lone paroxysmal atrial fibrillation: a cross-sectional study. Turk Kardiyoloji Dernegi arsivi: Turk Kardiyoloji Derneginin yayin organidir 43(3):259–268

    Google Scholar 

  3. Gay MS, Li Y, Xiong F, Lin T, Zhang L (2015) Dexamethasone treatment of newborn rats decreases cardiomyocyte endowment in the developing heart through epigenetic modifications. PLoS One 10(4):e0125033

    Article  PubMed  PubMed Central  Google Scholar 

  4. Antman EM, Loscalzo J (2016) Precision medicine in cardiology. Nat Rev Cardiol 13(10):591

    Article  PubMed  Google Scholar 

  5. König IR, Fuchs O, Hansen G et al (2017) What is precision medicine? Eur Respir J 50:1700391

    Article  PubMed  Google Scholar 

  6. Wang Y, Guan H (2017) The role of DNA methylation in Lens development and cataract formation. Cell Mol Neurobiol 37(6):979–984

    Article  CAS  PubMed  Google Scholar 

  7. Jung M, Kadam S, Xiong W, Rauch TA, Jin SG, Pfeifer GP (2015) MIRA-seq for DNA methylation analysis of CpG islands. Epigenomics 7(5):695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guida F, Sandanger TM, Castagne R et al (2015) Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet 24(8):2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuster V, Ryden LE, Cannom DS et al (2011) 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European heart rhythm association and the Heart Rhythm Society. J Am Coll Cardiol 57(11):e101–e198

    Article  PubMed  Google Scholar 

  10. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28(8):812–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palatini P (2004) Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 292(10):1174–1175

    CAS  PubMed  Google Scholar 

  12. Kao YH, Chen YC, Chung CC et al (2013) Heart failure and angiotensin II modulate atrial Pitx2c promotor methylation. Clin Exp Pharmacol Physiol 40(6):379–384

    Article  CAS  PubMed  Google Scholar 

  13. Mulla W, Hajaj B, Elyagon S et al (2019) Rapid atrial pacing promotes atrial fibrillation substrate in Unanesthetized instrumented rats. Front Physiol 10:1218

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen YJ, Chen YC, Tai CT, Yeh HI, Lin CI, Chen SA (2006) Angiotensin II and angiotensin II receptor blocker modulate the arrhythmogenic activity of pulmonary veins. Br J Pharmacol 147(1):12–22

    Article  CAS  PubMed  Google Scholar 

  15. Zhang YJ, Ma N, Su F, Liu H, Mei J (2015) Increased TRPM6 expression in atrial fibrillation patients contribute to atrial fibrosis. Exp Mol Pathol 98(3):486–490

    Article  CAS  PubMed  Google Scholar 

  16. Her AY, Choi EY, Shim CY et al (2012) Prediction of left atrial fibrosis with speckle tracking echocardiography in mitral valve disease: a comparative study with histopathology. Korean circulation journal 42(5):311–318

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cochet H, Mouries A, Nivet H et al (2015) Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J Cardiovasc Electrophysiol 26(5):484–492

    Article  PubMed  Google Scholar 

  18. Challen GA, Sun D, Jeong M et al (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tao H, Yang JJ, Chen ZW et al (2014) DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 323:42–50

    Article  CAS  PubMed  Google Scholar 

  20. Watson CJ, Collier P, Tea I et al (2014) Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet 23(8):2176–2188

    Article  CAS  PubMed  Google Scholar 

  21. Fatima N, Schooley JF Jr, Claycomb WC, Flagg TP (2012) Promoter DNA methylation regulates murine SUR1 (Abcc8) and SUR2 (Abcc9) expression in HL-1 cardiomyocytes. PLoS One 7(7):e41533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Packer M (1995) Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 92(6):1379–1382

    Article  CAS  PubMed  Google Scholar 

  23. Kao YH, Chen YC, Cheng CC, Lee TI, Chen YJ, Chen SA (2010) Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 38(1):217–222

    Article  CAS  PubMed  Google Scholar 

  24. Shen Y, Wang Z, Loo LW et al (2015) LINC00472 expression is regulated by promoter methylation and associated with disease-free survival in patients with grade 2 breast cancer. Breast Cancer Res Treat 154(3):473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang LY, Shen H, Yang Q et al (2019) LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation (Af) by reducing expression of JP2 and RyR2 via miR-24. Biomed Pharmacother 120:109364

    Article  CAS  PubMed  Google Scholar 

  26. Padmanabhan A, Haldar SM (2018) Unusual transcription factor protects against heart failure. Science (New York, NY) 362(6421):1359–1360

    Article  CAS  Google Scholar 

  27. Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98

    Article  CAS  PubMed  Google Scholar 

  28. Gros C, Fahy J, Halby L et al (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94(11):2280–2296

    Article  CAS  PubMed  Google Scholar 

  29. Shen K, Tu T, Yuan Z et al (2017) DNA methylation dysregulations in valvular atrial fibrillation. Clin Cardiol 40(9):686–691

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tao H, Shi KH, Yang JJ, Li J (2016) Epigenetic mechanisms in atrial fibrillation: new insights and future directions. Trends Cardiovasc Med 26(4):306–318

    Article  CAS  PubMed  Google Scholar 

  31. Zhao G, Zhou J, Gao J et al (2017) Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol Med Rep 16(4):5505–5514

    Article  CAS  PubMed  Google Scholar 

  32. Tsai CT, Lai LP, Kuo KT et al (2008) Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling. Circulation 117(3):344–355

    Article  CAS  PubMed  Google Scholar 

  33. Taniyama Y, Ito M, Sato K et al (2005) Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 38(2):375–385

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was funded by National Key Research and Development Program (Grant No. 2018-YFC-1312505 to Yangyang Zhang). Mengwei Lv and Wen Ge contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lv, M., Ge, W., Li, Z., Wang, C., Zhang, Y. (2020). DNA Methylation in Atrial Fibrillation and Its Potential Role in Precision Medicine. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics