Skip to main content

Assessment of ROS Production in the Mitochondria of Live Cells

  • Protocol
  • First Online:
Reactive Oxygen Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2202))

Abstract

Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slot JW et al (1986) Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Investig 55(3):363–371

    PubMed  CAS  Google Scholar 

  2. Jiang J et al (2003) Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radic Biol Med 35(7):814–825

    Article  CAS  Google Scholar 

  3. Angelova PR et al (2015) Lipid peroxidation is essential for alpha-synuclein-induced cell death. J Neurochem 133(4):582–589

    Article  CAS  Google Scholar 

  4. Abeti R et al (2016) Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis 7:e2237

    Article  CAS  Google Scholar 

  5. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592(5):692–702

    Article  CAS  Google Scholar 

  6. Vaarmann A, Gandhi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285(32):25018–25023

    Article  CAS  Google Scholar 

  7. Angelova PR, Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 100:81–85

    Article  CAS  Google Scholar 

  8. Abramov AY, Duchen MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim Biophys Acta 1777(7–8):953–964

    Article  CAS  Google Scholar 

  9. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27(5):1129–1138

    Article  CAS  Google Scholar 

  10. Esteras N et al (2017) Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol 12:410–422

    Article  CAS  Google Scholar 

  11. Angelova PR et al (2018) Mitochondrial dysfunction in Parkinsonian mesenchymal stem cells impairs differentiation. Redox Biol 14:474–484

    Article  CAS  Google Scholar 

  12. Arber C et al (2017) iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease. PLoS One 12(9):e0184104

    Article  CAS  Google Scholar 

  13. Reeve AK et al (2015) Aggregated alpha-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis 6:e1820

    Article  CAS  Google Scholar 

  14. Deas E et al (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24(7):376–391

    Article  CAS  Google Scholar 

  15. Kovac S et al (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 1850(4):794–801

    Article  CAS  Google Scholar 

  16. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  Google Scholar 

  17. Holmstrom KM et al (2013) Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2(8):761–770

    Article  CAS  Google Scholar 

  18. Abramov AY, Duchen MR (2010) Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim Biophys Acta 1800(3):297–304

    Article  CAS  Google Scholar 

  19. Abramov AY et al (2010) Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133(Pt 3):797–807

    Article  Google Scholar 

  20. Ludtmann MHR et al (2018) alpha-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9(1):2293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Y. Abramov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Angelova, P.R., Dinkova-Kostova, A.T., Abramov, A.Y. (2021). Assessment of ROS Production in the Mitochondria of Live Cells. In: Espada, J. (eds) Reactive Oxygen Species. Methods in Molecular Biology, vol 2202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0896-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0896-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0895-1

  • Online ISBN: 978-1-0716-0896-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics