Skip to main content

Protein Structure Modeling with MODELLER

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2199))

Abstract

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In the following chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  Google Scholar 

  2. Holcomb J, Spellmon N, Zhang Y, Doughan M, Li C, Yang Z (2017) Protein crystallization: eluding the bottleneck of X-ray crystallography. AIMS Biophys 4(4):557–575. https://doi.org/10.3934/biophy.2017.4.557

    Article  CAS  Google Scholar 

  3. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  Google Scholar 

  4. Schwede T, Sali A, Honig B, Levitt M, Berman H, Jones D, Brenner S, Burley S, Das R, Dokholyan N, Dunbrack RJ, Fidelis K, Fiser A, Godzik A, Huang Y, Humblet C, Jacobson M, Joachimiak A, Krystek SJ, Kortemme T, Kryshtafovych A, Montelione G, Moult J, Murray D, Sanchez R, Sosnick T, Standley D, Stouch T, Vajda S, Vasquez M, Westbrook J, Wilson I (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure 17(2):151–159

    Article  CAS  Google Scholar 

  5. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18(3):342–348. https://doi.org/10.1016/j.sbi.2008.02.004

    Article  CAS  Google Scholar 

  6. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  7. Eswar N, Sali A (2009) Protein structure modeling. In: Sussman JL, Spadon P (eds) From molecules to medicine, structure of biological macromolecules and its relevance in combating new diseases and bioterrorism, NATO science for peace and security series - A: Chemistry and biology. Springer, Dordrecht, the Netherlands, pp 139–151

    Google Scholar 

  8. Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16(2):172–177. https://doi.org/10.1016/j.sbi.2006.02.003

    Article  CAS  Google Scholar 

  9. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382. https://doi.org/10.1146/annurev.biochem.77.062906.171838

    Article  CAS  Google Scholar 

  10. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci U S A 101(20):7594–7599. https://doi.org/10.1073/pnas.0305695101

    Article  CAS  Google Scholar 

  11. Simons KT, Bonneau R, Ruczinski I, Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176

    Article  CAS  Google Scholar 

  12. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC, Datta RS, Sampathkumar P, Madhusudhan MS, Sjolander K, Ferrin TE, Burley SK, Sali A (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39:465–474

    Article  Google Scholar 

  13. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  Google Scholar 

  14. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  15. Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their profiles. Protein Sci 13(4):1071–1087

    Article  CAS  Google Scholar 

  16. Madhusudhan MS, Marti-Renom MA, Sanchez R, Sali A (2006) Variable gap penalty for protein sequence-structure alignment. Protein Eng Des Sel 19(3):129–133

    Article  CAS  Google Scholar 

  17. Madhusudhan MS, Webb BM, Marti-Renom MA, Eswar N, Sali A (2009) Alignment of multiple protein structures based on sequence and structure features. Protein Eng Des Sel 22:569–574

    Article  CAS  Google Scholar 

  18. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. https://doi.org/10.1002/jcc.21287

    Article  CAS  Google Scholar 

  19. Sali A, Overington JP (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3(9):1582–1596

    Article  CAS  Google Scholar 

  20. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  Google Scholar 

  21. Wu G, Fiser A, ter Kuile B, Sali A, Muller M (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci U S A 96(11):6285–6290

    Article  CAS  Google Scholar 

  22. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  23. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  Google Scholar 

  24. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  Google Scholar 

  25. John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31(14):3982–3992. https://doi.org/10.1093/nar/gkg460

    Article  CAS  Google Scholar 

  26. Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448. https://doi.org/10.1110/ps.22802

    Article  CAS  Google Scholar 

  27. Eramian D, Eswar N, Shen M, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted? Protein Sci 17(11):1881–1893

    Article  CAS  Google Scholar 

  28. Vajda S, Kozakov D (2009) Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol 19(2):164–170. https://doi.org/10.1016/j.sbi.2009.02.008

    Article  CAS  Google Scholar 

  29. Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins 78(15):3073–3084. https://doi.org/10.1002/prot.22818

    Article  CAS  Google Scholar 

  30. Alber F, Forster F, Korkin D, Topf M, Sali A (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477

    Article  CAS  Google Scholar 

  31. Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244

    Article  CAS  Google Scholar 

  32. Robinson C, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450(7172):973–982

    Article  CAS  Google Scholar 

  33. Ward A, Sali A, Wilson I (2013) Integrative structural biology. Science 339(6122):913-5. https://doi.org/10.1126/science.1228565

  34. Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 78:3205–3211

    Article  CAS  Google Scholar 

  35. Tjioe E, Lasker K, Webb B, Wolfson H, Sali A (2011) MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map. Nucleic Acids Res 39:167–170

    Article  Google Scholar 

  36. Schneidman-Duhovny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 3:461–471

    Article  Google Scholar 

  37. Schneidman D, Hammel M, Tainer J, Sali A (2016) FoXS, FoXSDock, and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44(W1):W424–W429. https://doi.org/10.1093/nar/gkw389

    Article  CAS  Google Scholar 

  38. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94

    Article  CAS  Google Scholar 

  39. May AC (2004) Percent sequence identity; the need to be explicit. Structure 12(5):737–738. https://doi.org/10.1016/j.str.2004.04.001

    Article  CAS  Google Scholar 

  40. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  41. Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276(1):71–84. https://doi.org/10.1006/jmbi.1997.1525

    Article  CAS  Google Scholar 

  42. Steindel PA, Chen EH, Wirth JD, Theobald DL (2016) Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein Sci 25(7):1319–1331. https://doi.org/10.1002/pro.2904

    Article  CAS  Google Scholar 

  43. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    Article  CAS  Google Scholar 

  44. Zhou H, Zhou Y (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58(2):321–328. https://doi.org/10.1002/prot.20308

    Article  CAS  Google Scholar 

  45. McGuffin LJ, Jones DT (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19(7):874–881

    Article  CAS  Google Scholar 

  46. Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51(4):504–514. https://doi.org/10.1002/prot.10369

    Article  CAS  Google Scholar 

  47. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310(1):243–257. https://doi.org/10.1006/jmbi.2001.4762

    Article  CAS  Google Scholar 

  48. Dunbrack RL Jr (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16(3):374–384. https://doi.org/10.1016/j.sbi.2006.05.006

    Article  CAS  Google Scholar 

  49. Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7(3):217–227

    Article  CAS  Google Scholar 

  50. Eramian D, Shen M, Devos D, Melo F, Sali A, Marti-Renom M (2006) A composite score for predicting errors in protein structure models. Protein Sci 15(7):1653–1666

    Article  CAS  Google Scholar 

  51. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367. https://doi.org/10.1002/prot.10613

    Article  CAS  Google Scholar 

  52. Zhao S, Zhu K, Li J, Friesner RA (2011) Progress in super long loop prediction. Proteins 79(10):2920–2935. https://doi.org/10.1002/prot.23129

    Article  CAS  Google Scholar 

  53. Fernandez-Fuentes N, Oliva B, Fiser A (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 34(7):2085–2097. https://doi.org/10.1093/nar/gkl156

    Article  CAS  Google Scholar 

  54. van Vlijmen HW, Karplus M (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 267(4):975–1001. https://doi.org/10.1006/jmbi.1996.0857

    Article  Google Scholar 

  55. Coutsias EA, Seok C, Jacobson MP, Dill KA (2004) A kinematic view of loop closure. J Comput Chem 25(4):510–528. https://doi.org/10.1002/jcc.10416

    Article  CAS  Google Scholar 

  56. Karami Y, Guyon F, De Vries S, Tuffery P (2018) DaReUS-Loop: accurate loop modeling using fragments from remote or unrelated proteins. Sci Rep 8(1):13673. https://doi.org/10.1038/s41598-018-32079-w

    Article  CAS  Google Scholar 

  57. Nguyen SP, Li Z, Xu D, Shang Y (2017) New deep learning methods for protein loop modeling. IEEE/ACM Trans Comput Biol Bioinform 16:596. https://doi.org/10.1109/TCBB.2017.2784434

    Article  Google Scholar 

  58. Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins Suppl 1:50–58

    Article  CAS  Google Scholar 

  59. Srinivasan N, Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6(5):501–512

    Article  CAS  Google Scholar 

  60. Webb B, Sali A (2014) Protein structure modeling with MODELLER. In: Kihara D (ed) Methods in molecular biology, vol 1137. Springer, New York, pp 1–15

    Google Scholar 

  61. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54

    Article  CAS  Google Scholar 

  62. Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 95(23):13597–13602

    Article  CAS  Google Scholar 

  63. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of our research group. This review is partially based on our previous reviews [60, 61]. We also acknowledge support from National Institutes of Health (U54 GM094625) as well as computing hardware support from Ron Conway, Mike Homer, Hewlett-Packard, NetApp, IBM, and Intel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Sali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Webb, B., Sali, A. (2021). Protein Structure Modeling with MODELLER. In: Chen, Y.W., Yiu, CP.B. (eds) Structural Genomics. Methods in Molecular Biology, vol 2199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0892-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0892-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0891-3

  • Online ISBN: 978-1-0716-0892-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics