Skip to main content

Detection of Low-Abundance DNA Modifications Using Signal Amplification-Based Immunocytochemistry

  • Protocol
  • First Online:
DNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2198))

Abstract

Immunocytochemistry can be instrumental in assessing the spatial distribution and relative levels of epigenetic modifications. Although conventional immunostaining has been utilized for the detection of 5-methylcytosine (5mC) in animal cells and tissues for several decades, the sensitivity of techniques based on the use of fluorophore-conjugated secondary antibodies is not always sufficient for studying DNA modifications that are less abundant in DNA compared with 5mC. Here we describe a protocol for sensitive immunocytochemistry that utilizes peroxidase-conjugated secondary antibodies coupled with catalyzed reporter deposition and allows for detection of low-abundance noncanonical bases (e.g., 5-carboxylcytosine, 5caC, 5-formylcytosine, 5fC, 5-hydroxymethyluracil, 5hmU) in mammalian DNA. This method can be employed for evaluation of the levels and nuclear distribution of DNA modifications and permits their colocalization with protein markers in animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534. https://doi.org/10.1038/nrgastro.2017.33

    Article  CAS  PubMed  Google Scholar 

  2. Mayer W, Niveleau A, Walter JR et al (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502. https://doi.org/10.1038/35000656

    Article  CAS  PubMed  Google Scholar 

  3. Oswald J, Engemann S, Lane N et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478. https://doi.org/10.1016/S0960-9822(00)00448-6

    Article  CAS  PubMed  Google Scholar 

  4. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito S, D’Alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133. https://doi.org/10.1038/nature09303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfaffeneder T, Hackner B, Truss M et al (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed 50:7008–7012. https://doi.org/10.1002/anie.201103899

    Article  CAS  Google Scholar 

  8. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307. https://doi.org/10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338. https://doi.org/10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weber AR, Krawczyk C, Robertson AB et al (2016) Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 7:10806. https://doi.org/10.1038/ncomms10806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashimoto H, Liu Y, Upadhyay AK et al (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40:4841–4849. https://doi.org/10.1093/nar/gks155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Otani J, Kimura H, Sharif J et al (2013) Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. PLoS One 8:e82961. https://doi.org/10.1371/journal.pone.0082961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bachman M, Uribe-Lewis S, Yang X et al (2014) 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6:1049–1055. https://doi.org/10.1038/nchem.2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iurlaro M, Ficz G, Oxley D et al (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14:R119. https://doi.org/10.1186/gb-2013-14-10-r119

    Article  PubMed  PubMed Central  Google Scholar 

  16. Spruijt CG, Gnerlich F, Smits AH et al (2013) Dynamic readers for 5-hydroxymethylcytosine and its oxidized derivatives. Cell 152:1146–1159. https://doi.org/10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Hashimoto H, Zhang X et al (2016) MAX is an epigenetic sensor of 5-carboxylcytosine and is altered in multiple myeloma. Nucleic Acids Res 45:2396–2407. https://doi.org/10.1093/nar/gkw1184

    Article  CAS  PubMed Central  Google Scholar 

  18. Wheldon LM, Abakir A, Ferjentsik Z et al (2014) Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 7:1353–1361. https://doi.org/10.1016/j.celrep.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  19. Raiber EA, Portella G, Martínez Cuesta S et al (2018) 5-Formylcytosine organizes nucleosomes and forms schiff base interactions with histones in mouse embryonic stem cells. Nat Chem 10:1755–4349. https://doi.org/10.1038/s41557-018-0149-x

    Article  CAS  Google Scholar 

  20. Wang L, Zhou Y, Xu L, Xiao R et al (2015) Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 523:621–625. https://doi.org/10.1038/nature14482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raiber EA, Murat P, Chirgadze DY et al (2015) 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 22(1):44–49. https://doi.org/10.1038/nsmb.2936

    Article  CAS  PubMed  Google Scholar 

  22. Klungland A, Robertson AB (2016) Oxidized C5-methyl cytosine bases in DNA: 5-hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med 107:62–68

    Article  PubMed  Google Scholar 

  23. Iurlaro M, McInroy GR, Burgess HE et al (2016) In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol 17:141. https://doi.org/10.1186/s13059-016-1001-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lewis LC, Lo PC, Foster JM et al (2017) Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification. Epigenetics 12(4):277–286. https://doi.org/10.1080/15592294.2017.1292189

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hashimoto H, Olanrewaju YO, Zheng Y et al (2014) Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev 28:2304–2313. https://doi.org/10.1101/gad.250746.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guz J, Gackowski D, Foksinski M et al (2014) Comparison of the absolute level of epigenetic marks 5-methylcytosine, 5-hydroxymethylcytosine, and 5-hydroxymethyluracil between human leukocytes and sperm. Biol Reprod 91(3):55. https://doi.org/10.1095/biolreprod.114.121541

    Article  CAS  PubMed  Google Scholar 

  27. Olinski R, Starczak M, Gackowski D (2016) Enigmatic 5-hydroxymethyluracil: oxidatively modified base, epigenetic mark or both? Mutat Res Rev Mutat Res 767:59–66. https://doi.org/10.1016/j.mrrev.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Huang H, Liu D et al (2015) N6-methyladenine DNA modification in Drosophila. Cell 161:893–906. https://doi.org/10.1016/j.cell.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  29. Wu TP, Wang T, Seetin MG et al (2016) DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532:329–333. https://doi.org/10.1038/nature17640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao C, Zhu S, He M et al (2018) N(6)-methyladenine DNA modification in the human genome. Mol Cell 71:306–318. https://doi.org/10.1016/j.molcel.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  31. Greer EL, Blanco MA, Gu L, Sendinc E et al (2015) DNA methylation on N(6)-adenine in C. elegans. Cell 161:868–878. https://doi.org/10.1016/j.cell.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koziol MJ, Bradshaw CR, Allen GE et al (2015) Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 23:24–30. https://doi.org/10.1038/nsmb.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Zhu Y, Luo GZ et al (2016) Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms13052

    Article  CAS  Google Scholar 

  34. Wion D, Casadesús J (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Micro 4:183–192. https://doi.org/10.1038/nrmicro1350

    Article  CAS  Google Scholar 

  35. Luo GZ, Blanco MA, Greer EL et al (2015) DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes. Nat Rev Mol Cell Biol 16:705–710. https://doi.org/10.1038/nrm4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratel D, Ravanat J-L, Charles M-P et al (2006) Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett 580:3179–3184. https://doi.org/10.1016/j.febslet.2006.04.074

    Article  CAS  PubMed  Google Scholar 

  37. O’Brown ZK, Boulias K, Wang J et al (2019) Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genomics 20:445. https://doi.org/10.1186/s12864-019-5754-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schiffers S, Ebert C, Rahimoff R (2017) Quantitative LC–MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew Chem 56:11268–11271. https://doi.org/10.1002/anie.201700424

    Article  CAS  Google Scholar 

  39. Fu Y, Luo G, Chen K et al (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161:879–892. https://doi.org/10.1016/j.cell.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abakir A, Giles TC, Cristini A et al (2020) N6-methyladenosine regulates the stability of RNA: DNA hybrids in human cells. Nat Genet 52:48–55. https://doi.org/10.1038/s41588-019-0549-x

    Article  CAS  PubMed  Google Scholar 

  41. Moler E, Abakir A, Eleftheriou M et al (2018) Population epigenomics: advancing understanding of phenotypic plasticity, acclimation, adaptation and diseases. In: Rajora O (ed) Population genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_59

    Chapter  Google Scholar 

  42. Santos F, Dean W (2006) Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. Methods Mol Biol 325:129–137. https://doi.org/10.1385/1-59745-005-7:129

    Article  CAS  PubMed  Google Scholar 

  43. Abakir A, Wheldon L, Johnson AD et al (2016) Detection of modified forms of cytosine using sensitive immunohistochemistry. J Vis Exp (114):54416. https://doi.org/10.3791/54416

  44. Ruzov A, Tsenkina Y, Serio A et al (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21(9):1332–1342. https://doi.org/10.1038/cr.2011.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bobrow MN, Harris TD, Shaughnessy KJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125(1–2):279–285. https://doi.org/10.1016/0022-1759(91)90399-z

    Article  CAS  PubMed  Google Scholar 

  46. Wasielewski R, Mengel M, Gignac S et al (1997) Tyramine amplification technique in routine immunohistochemistry. J Histochem Cytochem 45(11):1455–1459. https://doi.org/10.1177/002215549704501102

    Article  Google Scholar 

  47. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in-situ hybridization techniques. Nat Rev 6:339–348. https://doi.org/10.1038/nrmicro1888

    Article  CAS  Google Scholar 

  48. Almeida RD, Sottile V, Loose M et al (2012) Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 7:137–140. https://doi.org/10.4161/epi.7.2.18949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alioui A, Wheldon LM, Abakir A et al (2012) 5-Carboxylcytosine is localized to euchromatic regions in the nuclei of follicular cells in axolotl ovary. Nucleus 3(6):565–569. https://doi.org/10.4161/nucl.22799

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eleftheriou M, Pascual AJ, Wheldon LM et al (2015) 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenetics 21(7):88. https://doi.org/10.1186/s13148-015-0117-x

    Article  CAS  Google Scholar 

  51. Ramsawhook A, Lewis L, Coyle B et al (2017) Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated TET1 expression. Clin Epigenetics 13(9):18. https://doi.org/10.1186/s13148-016-0306-2

    Article  CAS  Google Scholar 

  52. Rajani S, Gell C, Abakir A et al (2020) Computational analysis of DNA modifications in confocal images. DNA modifications. Methods Mol Biol. (in press)

    Google Scholar 

  53. Bigenzahn JW, Collu GM, Kartnig F et al (2018) LZTR1 is a regulator of RAS ubiquitination and signaling. Science 362(6419):1171–1177. https://doi.org/10.1126/science.aap8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Andrew Jackson (School of Life Sciences, Nottingham University) for provision of mouse embryonic stem cells as well as the members of School of Life Sciences Imaging (SLIM) facility and Antony Alioui for technical assistance. A.R.’s lab is supported by Biotechnology and Biological Sciences Research Council [grant number BB/N005759/1] to A.R. A.A. is supported by Medical Research Council IMPACT DTP PhD Studentship [grant number MR/N013913/1] to A.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkadir Abakir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abakir, A., Ruzov, A. (2021). Detection of Low-Abundance DNA Modifications Using Signal Amplification-Based Immunocytochemistry. In: Ruzov, A., Gering, M. (eds) DNA Modifications. Methods in Molecular Biology, vol 2198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0876-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0876-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0875-3

  • Online ISBN: 978-1-0716-0876-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics