Skip to main content

Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2196))

Abstract

Diversified genomes derived from chromosomal rearrangements are valuable materials for evolution. Naturally, chromosomal rearrangements occur at extremely low frequency to ensure genome stability. In the synthetic yeast genome project (Sc2.0), an inducible chromosome rearrangement system named Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is built to produce chromosomal rearrangements such as deletion, duplication, inversion, and translocation at high efficiency. Here, we detail the method to activate SCRaMbLE in a synthetic strain, to analyze the SCRaMbLEd genome, and to dissect the causative rearrangements for a desired phenotype after SCRaMbLEing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang F, Voytas DF (2018) Synthetic genomes engineered by SCRaMbLEing. Sci China Life Sci 61:975–977

    Article  Google Scholar 

  2. Steensels J, Gorkovskiy A, Verstrepen KJ (2018) SCRaMbLEing to understand and exploit structural variation in genomes. Nat Commun 9:1937

    Article  CAS  Google Scholar 

  3. Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355:1040–1044

    Article  CAS  Google Scholar 

  4. Mercy G, Mozziconacci J, Scolari VF et al (2017) 3D organization of synthetic and scrambled chromosomes. Science 355:eaaf4597

    Article  CAS  Google Scholar 

  5. Shen Y, Stracquadanio G, Wang Y et al (2015) SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 193433:115

    Google Scholar 

  6. Dymond J, Boeke J (2012) The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng Bugs 3:168–171

    PubMed  PubMed Central  Google Scholar 

  7. Dymond JS, Richardson SM, Coombes CE et al (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477:471–476

    Article  CAS  Google Scholar 

  8. Wang J, Xie Z-X, Ma Y, Chen X-R, Huang Y-Q, He B, Jia B, Li B-Z, Yuan Y-J (2018) Ring synthetic chromosome V SCRaMbLE. Nat Commun 9:3783

    Article  CAS  Google Scholar 

  9. Wu Y, Zhu R-Y, Mitchell LA et al (2018) In vitro DNA SCRaMbLE. Nat Commun 9:1935

    Article  CAS  Google Scholar 

  10. Shen MJ, Wu Y, Yang K et al (2018) Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9:1934

    Article  CAS  Google Scholar 

  11. Luo Z, Wang L, Wang Y et al (2018) Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun 9:1930

    Google Scholar 

  12. Liu W, Luo Z, Wang Y et al (2018) Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9:1936

    Article  CAS  Google Scholar 

  13. Jia B, Wu Y, Li B-Z et al (2018) Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9:1933

    Article  CAS  Google Scholar 

  14. Hochrein L, Mitchell LA, Schulz K, Messerschmidt K, Mueller-Roeber B (2018) L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nat Commun 9:1931

    Article  CAS  Google Scholar 

  15. Blount BA, Gowers G-OF, Ho JCH, Ledesma-Amaro R, Jovicevic D, McKiernan RM, Xie ZX, Li BZ, Yuan YJ, Ellis T (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9:1932

    Article  CAS  Google Scholar 

  16. Zhang W, Zhao G, Luo Z et al (2017) Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 355:eaaf3981

    Article  CAS  Google Scholar 

  17. Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183:413–422

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (2018YFA0900100), the National Natural Science Foundation of China (31725002, 31800069, and 31800082), Shenzhen Key Laboratory of Synthetic Genomics (ZDSYS201802061806209), Shenzhen Science and Technology Program (KQTD20180413181837372), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006), and Bureau of International Cooperation, Chinese Academy of Sciences (172644KYSB20180022, 172644KYSB20170042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbiao Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luo, Z., Jiang, S., Dai, J. (2021). Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE. In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 2196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0868-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0868-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0867-8

  • Online ISBN: 978-1-0716-0868-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics