Skip to main content

Two-Dimensional Liquid Chromatography in Metabolomics and Lipidomics

  • Protocol
  • First Online:
Metabolomics

Part of the book series: Neuromethods ((NM,volume 159))

Abstract

Multidimensional separation systems have arisen in the last years to overcome certain limitations of the classical one-dimensional separations. Multidimensional analytical approaches achieve a greater separation power, a crucial aspect when dealing with highly complex samples, as in metabolomics and lipidomics. Online comprehensive two-dimensional chromatography is a particularly interesting mode when pursuing untargeted analysis, which allows for separating, and consequently identifying a more extensive number of analytes. This chapter aims to summarize current applications of 2D-LC to the fields of metabolomics and lipidomics, and setups of different separation mechanism that are being employed, showing the most suitable combinations of chromatographic modes, depending on the target compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang H, Jiang JM, Zheng D et al (2019) A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of ginsenosides from white and red ginsengs. J Pharm Biomed Anal 163:24–33. https://doi.org/10.1016/j.jpba.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  2. Sarrut M, Corgier A, Crétier G et al (2015) Potential and limitations of on-line comprehensive reversed phase liquid chromatography×supercritical fluid chromatography for the separation of neutral compounds: An approach to separate an aqueous extract of bio-oil. J Chromatogr A 1402:124–133. https://doi.org/10.1016/j.chroma.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Stoll DR, Carr PW (2017) Two-dimensional liquid chromatography: a state of the art tutorial. Anal Chem 89(1):519–531. https://doi.org/10.1021/acs.analchem.6b03506

    Article  CAS  PubMed  Google Scholar 

  4. Pirok BWJ, Stoll DR, Schoenmakers PJ (2019) Recent developments in two-dimensional liquid chromatography – fundamental improvements for practical applications. Anal Chem 91(1):240–263. https://doi.org/10.1021/acs.analchem.8b04841

    Article  CAS  PubMed  Google Scholar 

  5. Pirok BWJ, Gargano AFG, Schoenmakers PJ (2018) Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 41:68–98. https://doi.org/10.1002/jssc.201700863

    Article  CAS  PubMed  Google Scholar 

  6. Marriott PJ, Wu Z-Y, Schoenmakers P (2012) Nomenclature and conventions in comprehensive multidimensional chromatography – an update. Chromatogr Online 25(5):266–275

    CAS  Google Scholar 

  7. Cheng C, Liao CF (2018) Novel dual two-dimensional liquid chromatography online coupled to ultraviolet detector, fluorescence detector, ion-trap mass spectrometer for short peptide amino acid sequence determination with bottom-up strategy. J Chin Chem Soc 65:714–725. https://doi.org/10.1002/jccs.201700380

    Article  CAS  Google Scholar 

  8. Pandohee J, Stevenson P, Zhou X-R et al (2015) Multi-dimensional liquid chromatography and metabolomics, are two dimensions better than one? Curr Metabolomics 3:10–20. https://doi.org/10.2174/2213235X03666150403231202

    Article  CAS  Google Scholar 

  9. Kalili KM, De Villiers A (2013) Systematic optimisation and evaluation of on-line, off-line and stop-flow comprehensive hydrophilic interaction chromatography × reversed phase liquid chromatographic analysis of procyanidins, Part I: theoretical considerations. J Chromatogr A 1289:58–68. https://doi.org/10.1016/j.chroma.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  10. Bedani F, Kok WT, Janssen HG (2006) A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography × liquid chromatography. J Chromatogr A 1133:126–134. https://doi.org/10.1016/j.chroma.2006.08.048

    Article  CAS  PubMed  Google Scholar 

  11. Striegel AM (2001) Longitudinal diffusion in size-exclusion chromatography: a stop-flow size-exclusion chromatography study. J Chromatogr A 932:21–31. https://doi.org/10.1016/S0021-9673(01)01214-6

    Article  CAS  PubMed  Google Scholar 

  12. Donato P, Rigano F, Cacciola F et al (2016) Comprehensive two-dimensional liquid chromatography–tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. J Chromatogr A 1458:54–62. https://doi.org/10.1016/j.chroma.2016.06.042

    Article  CAS  PubMed  Google Scholar 

  13. Vivo G, Van Der Wal S, Schoenmakers PJ (2010) Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first- and second-dimensions: a pareto-optimality approach. Analysis Anal Chem 82(20):3090–3100. https://doi.org/10.1021/ac101420f

    Article  CAS  Google Scholar 

  14. Pirok BWJ, Pous-Torres S, Ortiz-Bolsico C et al (2016) Program for the interpretive optimization of two-dimensional resolution. J Chromatogr A 1450:29–37. https://doi.org/10.1016/j.chroma.2016.04.061

    Article  CAS  PubMed  Google Scholar 

  15. Stoll DR, Shoykhet K, Petersson P, Buckenmaier S (2017) Active solvent modulation: a valve-based approach to improve separation compatibility in two-dimensional liquid chromatography. Anal Chem 89:9260–9267. https://doi.org/10.1021/acs.analchem.7b02046

    Article  CAS  PubMed  Google Scholar 

  16. Vonk RJ, Gargano AFG, Davydova E et al (2015) Comprehensive two-dimensional liquid chromatography with stationary-phase-assisted modulation coupled to high-resolution mass spectrometry applied to proteome analysis of saccharomyces cerevisiae. Anal Chem 87:5387–5394. https://doi.org/10.1021/acs.analchem.5b00708

    Article  CAS  PubMed  Google Scholar 

  17. Tian H, Xu J, Xu Y, Guan Y (2006) Multidimensional liquid chromatography system with an innovative solvent evaporation interface. J Chromatogr A 1137:42–48. https://doi.org/10.1016/j.chroma.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Navarro-Reig M, Jaumot J, Tauler R (2018) An untargeted lipidomic strategy combining comprehensive two-dimensional liquid chromatography and chemometric analysis. J Chromatogr A 1568:80–90. https://doi.org/10.1016/j.chroma.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  19. Navarro-Reig M, Jaumot J, Baglai A et al (2017) Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution. Anal Chem 89:7675–7683. https://doi.org/10.1021/acs.analchem.7b01648

    Article  CAS  PubMed  Google Scholar 

  20. Donato P, Micalizzi G, Oteri M et al (2018) Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal Bioanal Chem 410:3297–3313. https://doi.org/10.1007/s00216-018-1045-3

    Article  CAS  PubMed  Google Scholar 

  21. Berkecz R, Tömösi F, Körmöczi T et al (2018) Comprehensive phospholipid and sphingomyelin profiling of different brain regions in mouse model of anxiety disorder using online two-dimensional (HILIC/RP)-LC/MS method. J Pharm Biomed Anal 149:308–317. https://doi.org/10.1016/j.jpba.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  22. Sun C, Zhao YY, Curtis JM (2015) Characterization of phospholipids by two-dimensional liquid chromatography coupled to in-line ozonolysis-mass spectrometry. J Agric Food Chem 63:1442–1451. https://doi.org/10.1021/jf5049595

    Article  CAS  PubMed  Google Scholar 

  23. Holčapek M, Ovčačíková M, Lísa M et al (2015) Continuous comprehensive two-dimensional liquid chromatography-electrospray ionization mass spectrometry of complex lipidomic samples. Anal Bioanal Chem 407:5033–5043. https://doi.org/10.1007/s00216-015-8528-2

    Article  CAS  PubMed  Google Scholar 

  24. Bang DY, Moon MH (2013) On-line two-dimensional capillary strong anion exchange/reversed phase liquid chromatography-tandem mass spectrometry for comprehensive lipid analysis. J Chromatogr A 1310:82–90. https://doi.org/10.1016/j.chroma.2013.08.069

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Lv P, Ai W et al (2017) Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 409:3211–3222. https://doi.org/10.1007/s00216-017-0261-6

    Article  CAS  PubMed  Google Scholar 

  26. Baglai A, Gargano AFG, Jordens J et al (2017) Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: two-dimensional liquid chromatography–mass spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry. J Chromatogr A 1530:90–103. https://doi.org/10.1016/j.chroma.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  27. Brouwers JF (2011) Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 1811:763–775. https://doi.org/10.1016/j.bbalip.2011.08.001

    Article  CAS  Google Scholar 

  28. D’Attoma A, Grivel C, Heinisch S (2012) On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: orthogonality and practical peak capacity consideratio. J Chromatogr A 1262:148–159. https://doi.org/10.1016/j.chroma.2012.09.028

    Article  CAS  PubMed  Google Scholar 

  29. Yang Q, Shi X, Gu Q et al (2012) On-line two dimensional liquid chromatography/mass spectrometry for the analysis of triacylglycerides in peanut oil and mouse tissue. J Chromatogr B Anal Technol Biomed Life Sci 895–896:48–55. https://doi.org/10.1016/j.jchromb.2012.03.013

    Article  CAS  Google Scholar 

  30. Yang L, Cui X, Zhang N et al (2015) Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem 407:5065–5077. https://doi.org/10.1007/s00216-015-8484-x

    Article  CAS  PubMed  Google Scholar 

  31. Sun C, Zhao YY, Curtis JM (2014) Elucidation of phosphatidylcholine isomers using two dimensional liquid chromatography coupled in-line with ozonolysis mass spectrometry. J Chromatogr A 1351:37–45. https://doi.org/10.1016/j.chroma.2014.04.069

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Tong X, Lv P et al (2014) A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients. J Chromatogr A 1372:110–119. https://doi.org/10.1016/j.chroma.2014.10.094

    Article  CAS  Google Scholar 

  33. Li M, Feng B, Liang Y et al (2013) Lipid profiling of human plasma from peritoneal dialysis patients using an improved 2D (NP/RP) LC-QToF MS method. Anal Bioanal Chem 405:6629–6638. https://doi.org/10.1007/s00216-013-7109-5

    Article  CAS  PubMed  Google Scholar 

  34. Krastanov A (2010) Metabolomics - the state of art. Biotechnol Biotechnol Equip 24:1537–1543. https://doi.org/10.2478/V10133-010-0001-y

    Article  CAS  Google Scholar 

  35. Woiwode U, Reischl RJ, Buckenmaier S et al (2018) Imaging peptide and protein chirality via amino acid analysis by chiral × chiral two-dimensional correlation liquid chromatography. Anal Chem 90:7963–7971. https://doi.org/10.1021/acs.analchem.8b00676

    Article  CAS  PubMed  Google Scholar 

  36. Toro-Uribe S, Montero L, López-Giraldo L et al (2018) Characterization of secondary metabolites from green cocoa beans using focusing-modulated comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta 1036:204–213. https://doi.org/10.1016/j.aca.2018.06.068

    Article  CAS  PubMed  Google Scholar 

  37. Muller M, Tredoux AGJ, de Villiers A (2018) Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis. J Chromatogr A 1571:107–120. https://doi.org/10.1016/j.chroma.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  38. Sommella E, Ismail OH, Pagano F et al (2017) Development of an improved online comprehensive hydrophilic interaction chromatography × reversed-phase ultra-high-pressure liquid chromatography platform for complex multiclass polyphenolic sample analysis. J Sep Sci 40:2188–2197. https://doi.org/10.1002/jssc.201700134

    Article  CAS  PubMed  Google Scholar 

  39. Montero L, Ibáñez E, Russo M et al (2016) Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection. Anal Chim Acta 913:145–159. https://doi.org/10.1016/j.aca.2016.01.040

    Article  CAS  PubMed  Google Scholar 

  40. Dugo P, Herrero M, Kumm T et al (2008) Comprehensive normal-phase × reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin. J Chromatogr A 1189:196–206. https://doi.org/10.1016/j.chroma.2007.11.116

    Article  CAS  PubMed  Google Scholar 

  41. Baglai A, Blokland MH, Mol HGJ et al (2018) Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated online comprehensive two-dimensional liquid chromatography – high-resolution mass spectrometry. Anal Chim Acta 1013:87–97. https://doi.org/10.1016/j.aca.2017.12.043

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Lu X, Xu G (2008) Development of a comprehensive two-dimensional hydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria. J Chromatogr A 1181:51–59. https://doi.org/10.1016/j.chroma.2007.12.034

    Article  CAS  PubMed  Google Scholar 

  43. Blokland MH, Zoontjes PW, Van Ginkel LA et al (2018) Multiclass screening in urine by comprehensive two-dimensional liquid chromatography time of flight mass spectrometry for residues of sulphonamides, beta-agonists and steroids. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:1703–1715. https://doi.org/10.1080/19440049.2018.1506160

    Article  CAS  PubMed  Google Scholar 

  44. Wong YF, Cacciola F, Fermas S et al (2018) Untargeted profiling of Glycyrrhiza glabra extract with comprehensive two-dimensional liquid chromatography-mass spectrometry using multi-segmented shift gradients in the second dimension: Expanding the metabolic coverage. Electrophoresis 39:1993–2000. https://doi.org/10.1002/elps.201700469

    Article  CAS  Google Scholar 

  45. Yan X, Wang LJ, Wu Z et al (2016) New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 1033–1034:1–8. https://doi.org/10.1016/j.jchromb.2016.07.053

    Article  CAS  Google Scholar 

  46. Hájek T, Jandera P, Staňková M, Česla P (2016) Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. J Chromatogr A 1446:91–102. https://doi.org/10.1016/j.chroma.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  47. Corgier A, Sarrut M, Crétier G, Heinisch S (2016) Potential of online comprehensive two-dimensional liquid chromatography for micro-preparative separations of simple samples. Chromatographia 79:255–260. https://doi.org/10.1007/s10337-015-3012-x

    Article  CAS  Google Scholar 

  48. Hájek T, Jandera P, Staňková M, Česla P (2016) Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. J Chromatogr A 1446:91–102. https://doi.org/10.1016/j.chroma.2016.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Spanish Ministry of Science and Innovation (MCI, Grant CTQ2017-82598-P). MPC acknowledges a predoctoral FPU 16/02640 scholarship from Spanish Ministry of Education and Vocational Training (MEFP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Jaumot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez-Cova, M., Tauler, R., Jaumot, J. (2021). Two-Dimensional Liquid Chromatography in Metabolomics and Lipidomics. In: Wood, P.L. (eds) Metabolomics . Neuromethods, vol 159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0864-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0864-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0863-0

  • Online ISBN: 978-1-0716-0864-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics