Skip to main content

Untargeted Metabolomics Determination of Postmortem Changes in Brain Tissue Samples by UHPLC-ESI-QTOF-MS and GC-EI-Q-MS

Part of the Neuromethods book series (NM,volume 159)

Abstract

Metabolomics is a well-established method that allows for the screening of a broad range of metabolic shifts, capturing the global state of a complex system. Postmortem biochemical processes induce significant metabolic changes within the brain, hindering later the proper interpretation of the results. Consequently, one of the main challenges when facing a metabolomics study based on brain tissue samples is dealing with such alterations induced by tissue degradation and the hypoxic/ischemic state generated in this organ after death. Generally speaking, metabolomics experiments can be addressed following a discovery-orientated untargeted approach or an aim-dependent targeted analysis. Here, we describe a protocol to carry out untargeted metabolomics studies based on brain tissue samples by liquid chromatography (LC) and gas chromatography (GC) coupled to mass spectrometry (MS) aiming to gain a deeper knowledge of the biochemical changes that occur in the brain tissue following death. We also provide some recommendations to avoid postmortem-induced changes in brain samples.

Key words

  • Postmortem interval
  • Multiplatform metabolomics
  • Untargeted lipidomics
  • LC-MS analysis
  • GC-MS analysis
  • MS1 annotation

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mora-Ortiz M, Trichard M, Oregioni A, Claus SP (2019) Thanatometabolomics: introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics 15(3):37

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Donaldson AE, Lamont IL (2013) Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PloS One 8(11):e82011

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mighdoll MI, Hyde TM (2018) Brain donation at autopsy: clinical characterization and toxicologic analyses. Handb Clin Neurol 150:143–154

    CrossRef  PubMed  Google Scholar 

  4. Lee K-H, Seo SW, Lim TS, Kim E-J, Kim B-C, Kim Y, Lee H-W, Jeon JP, Shim S-M, Na DL (2017) Proposal guidelines for standardized operating procedures of brain autopsy: brain bank in South Korea. Yonsei Med J 58(5):1055–1060

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Christensen AM, Passalacqua NV (2018) A laboratory manual for forensic anthropology. Academic Press, San Diego

    Google Scholar 

  6. Naz S, Moreira dos Santos DC, Garcia A, Barbas C (2014) Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 6(12):1657–1677

    CrossRef  CAS  PubMed  Google Scholar 

  7. Khamis MM, Adamko DJ, El-Aneed A (2017) Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev 36(2):115–134

    CrossRef  CAS  PubMed  Google Scholar 

  8. Haggarty J, Burgess KEV (2017) Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome. Curr Opin Biotechnol 43:77–85

    CrossRef  CAS  PubMed  Google Scholar 

  9. Fujimori T, Sasaki K (2013) LC-MS-based metabolomics. Encyclopedia Syst Biol 2013:1109–1111

    CrossRef  Google Scholar 

  10. Gonzalez-Riano C, Tapia-González S, García A, Muñoz A, DeFelipe J, Barbas C (2017) Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct Funct 222:2831–2853

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Astarita G, Stocchero M, Paglia G (2018) Unbiased lipidomics and metabolomics of human brain samples. In: Biomarkers for Alzheimer’s disease drug development. Springer, pp 255–269

    Google Scholar 

  12. Ivanisevic J, Epstein AA, Kurczy ME, Benton PH, Uritboonthai W, Fox HS, Boska MD, Gendelman HE, Siuzdak G (2014) Brain region mapping using global metabolomics. Chem Biol 21(11):1575–1584

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bayati A, Berman T (2017) Localized vs. systematic neurodegeneration: a paradigm shift in understanding neurodegenerative diseases. Front Syst Neurosci 11:62

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasilopoulou CG, Margarity M, Klapa MI (2016) Metabolomic analysis in brain research: opportunities and challenges. Front Physiol 7:183

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Samarasekera N, Salman RA-S, Huitinga I, Klioueva N, McLean CA, Kretzschmar H, Smith C, Ironside JW (2013) Brain banking for neurological disorders. Lancet Neurol 12(11):1096–1105

    CrossRef  PubMed  Google Scholar 

  16. Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54(3):151–160

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. de la Fuente AG, Traldi F, Siroka J, Kretowski A, Ciborowski M, Otero A, Barbas C, Godzien J (2018) Characterization and annotation of oxidized glycerophosphocholines for non-targeted metabolomics with LC-QTOF-MS data. Anal Chim Acta 1037:358–368

    CrossRef  CAS  Google Scholar 

  18. Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY (2019) Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 60(3):671–682

    CrossRef  CAS  PubMed  Google Scholar 

  19. Bazán NG Jr (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218(1):1–10

    CrossRef  PubMed  Google Scholar 

  20. Kovács Z, Kékesi KA, Bobest M, Török T, Szilágyi N, Szikra T, Szepesi Z, Nyilas R, Dobolyi A, Palkovits M (2005) Post mortem degradation of nucleosides in the brain: comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J Neurosci Methods 148(1):88–93

    CrossRef  CAS  PubMed  Google Scholar 

  21. Fujii T, Hattori K, Miyakawa T, Ohashi Y, Sato H, Kunugi H (2017) Metabolic profile alterations in the postmortem brains of patients with schizophrenia using capillary electrophoresis-mass spectrometry. J Schizophr Res 183:70–74

    CrossRef  Google Scholar 

  22. Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C (2019) Metabolomic study of hibernating Syrian hamster brains: in search of Neuroprotective agents. J Proteome Res 18:1175–1190

    CrossRef  CAS  PubMed  Google Scholar 

  23. Sostare J, Di Guida R, Kirwan J, Chalal K, Palmer E, Dunn WB, Viant MR (2018) Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Anal Chim Acta 1037:301–315

    CrossRef  CAS  PubMed  Google Scholar 

  24. Lämmerhofer M, Weckwerth W (2013) Metabolomics in practice: successful strategies to generate and analyze metabolic data. Wiley

    Google Scholar 

  25. Lamichhane S, Sen P, Dickens AM, Hyötyläinen T, Orešiè M (2018) An overview of metabolomics data analysis: current tools and future perspectives. Comp Anal Chem 82:387–413

    CrossRef  CAS  Google Scholar 

  26. Li Z, Lu Y, Guo Y, Cao H, Wang Q, Shui W (2018) Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection. Anal Chim Acta 1029:50–57

    CrossRef  CAS  PubMed  Google Scholar 

  27. Mastrangelo A, Ferrarini A, Rey-Stolle F, Garcia A, Barbas C (2015) From sample treatment to biomarker discovery: a tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Anal Chim Acta 900:21–35

    CrossRef  CAS  PubMed  Google Scholar 

  28. Garcia A, Barbas C (2011) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In: Metabolic profiling. Springer, pp 191–204

    Google Scholar 

  29. Rochat B (2017) Proposed confidence scale and ID score in the identification of known-unknown compounds using high resolution MS data. J Am Soc Mass Spectrom 28(4):709–723

    CrossRef  CAS  PubMed  Google Scholar 

  30. de la Fuente AG, Godzien J, López MF, Rupérez FJ, Barbas C, Otero A (2018) Knowledge-based metabolite annotation tool: CEU mass mediator. J Pharm Biomed Anal 154:138–149

    CrossRef  CAS  Google Scholar 

  31. Gil-de-la-Fuente A, Godzien J, Saugar S, Garcia-Carmona R, Badran H, Wishart DS, Barbas C, Otero A (2018) CEU mass mediator 3.0: a metabolite annotation tool. J Proteome Res 18(2):797–802

    CrossRef  CAS  PubMed  Google Scholar 

  32. Karaman I, Pinto RC, Graça G (2018) Metabolomics data preprocessing: from raw data to features for statistical analysis. Data analysis for omic sciences: methods and applications vol 82, pp 197–225

    Google Scholar 

  33. Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N, Ramon-Krauel M, Lerin C, Díaz M, Ibáñez L, Correig X (2016) eRah: a computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Anal Chem 88(19):9821–9829

    CrossRef  CAS  PubMed  Google Scholar 

  34. Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M (2011) Algorithms and tools for the preprocessing of LC–MS metabolomics data. Chemometr Intell Lab Syst 108(1):23–32

    CrossRef  CAS  Google Scholar 

  35. Gromski P, Xu Y, Kotze H, Correa E, Ellis D, Armitage E, Turner M, Goodacre R (2014) Influence of missing values substitutes on multivariate analysis of metabolomics data. Meta 4(2):433–452

    Google Scholar 

Download references

Acknowledgments

Authors want to express their gratitude to the financial support received from the Spanish Ministry of Science, Innovation and Universities RTI2018-095166-B-I00, and the FEDER Program 2014–2020 of the Community of Madrid (Ref. S2017/BMD3684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coral Barbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Riano, C., García, A., Barbas, C. (2021). Untargeted Metabolomics Determination of Postmortem Changes in Brain Tissue Samples by UHPLC-ESI-QTOF-MS and GC-EI-Q-MS. In: Wood, P.L. (eds) Metabolomics . Neuromethods, vol 159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0864-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0864-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0863-0

  • Online ISBN: 978-1-0716-0864-7

  • eBook Packages: Springer Protocols