Skip to main content

MRI Morphometry in Brain Tumors: Challenges and Opportunities in Expert, Radiomic, and Deep-Learning-Based Analyses

  • Protocol
  • First Online:
Brain Tumors

Part of the book series: Neuromethods ((NM,volume 158))

Abstract

Morphometry refers to the quantitative study of form, which has gained popularity in neurosciences for non-invasive in vivo evaluation of the normal and aging brain through the use of neuroimaging data, and hence designated as brain morphometry. In the rapidly evolving field of neuro-oncology, morphological evaluation provided by neuroimaging studies has been a cornerstone for the initial diagnosis, classification, management, and post-treatment follow-up of brain tumors. However, it has historically relied on predominantly subjective and qualitative observations made by imaging experts based on clinical experience. The wealth of knowledge obtained through visual inspection of tumor imaging has made remarkable contributions to the field and enhanced our understanding of tumor biology and natural history; however, further developments have been hampered by the lack of robust methods for more automated and quantitative evaluation. These methods are becoming more readily available and have been fueled by breakthrough developments in imaging post-processing and artificial intelligence. In this chapter, we review past contributions and evolution of the field of brain tumor morphological evaluation as it evolves into more automated computerized methods including radiomics and deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D :

2-dimensional

3D:

3-dimensional

AA :

Anaplastic astrocytoma

ANN :

Artificial neural network

BBB :

blood-brain barrier

BraTs:

Brain tumor segmentation

CE :

Contrast enhancement

CNS:

Central nervous system

CoLIAGe:

Co-occurrence of local anisotropic gradient orientations

CSF :

cerebrospinal fluid

CT:

Computed tomography

DTI :

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

GBCAs :

Gadolinium-based contrast agents

GBM:

Glioblastoma multiforme, or glioblastoma

GLCM :

Gray-level co-occurrence matrix

GLRLM :

Gray-level run length matrix

GRE :

Gradient echo

ICA :

Iodinated contrast agent

IDH :

Isocitrate dehydrogenase

IV :

Intravenous

KPS :

Karnofski Performance Scale

LBP :

Local binary patterns

LGG :

Low-grade glioma

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

nCET :

Non-contrast-enhancing tumor

NEX:

Number of excitations

NSCLC:

Non-small cell lung cancer

OS :

Overall survival

PET :

Positron emission tomography

PFS :

Progression-free survival

PTE:

Peritumoral edema

PWI:

Perfusion-weighted imaging

ROI :

Region of interest

SE :

Spin echo

SFTA :

Segmentation-based fractal texture analysis

SWI :

Susceptibility-weighted imaging

T1W :

T1-weighted

T1W+C:

T1-weighted post contrast

T2W:

T2-weighted

T2W-FLAIR:

T2-weighted fluid-attenuated inversion recovery

TCGA :

The Cancer Genome Atlas

TCIA :

The Cancer Imaging Archive

TN :

Tumor necrosis

TSE:

Turbo spin echo

VASARI :

Visually AcceSAble Rembrandt Images

WHO:

World Health Organization

XRT:

Chemoradiation

References

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 20(suppl_4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burger PC, Heinz ER, Shibata T, Kleihues P (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68(5):698–704. https://doi.org/10.3171/jns.1988.68.5.0698

    Article  CAS  PubMed  Google Scholar 

  3. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB (1987) Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62(6):450–459

    Article  CAS  PubMed  Google Scholar 

  4. Burger PC (1983) Pathologic anatomy and CT correlations in the glioblastoma multiforme. Appl Neurophysiol 46(1–4):180–187

    CAS  PubMed  Google Scholar 

  5. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet (London, England) 392(10145):432–446. https://doi.org/10.1016/s0140-6736(18)30990-5

    Article  Google Scholar 

  6. Sasaki H, Yoshida K (2017) Treatment recommendations for adult patients with diffuse gliomas of grades II and III according to the New WHO Classification in 2016. Neurol Med Chir 57(12):658–666. https://doi.org/10.2176/nmc.ra.2017-0071

    Article  Google Scholar 

  7. Perkins A, Liu G (2016) Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician 93(3):211–217

    PubMed  Google Scholar 

  8. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, Reifenberger G (2015) Glioma. Nat Rev Dis Primers 1:15017. https://doi.org/10.1038/nrdp.2015.17

    Article  PubMed  Google Scholar 

  9. Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012) Primary brain tumours in adults. Lancet (London, England) 379(9830):1984–1996. https://doi.org/10.1016/s0140-6736(11)61346-9

    Article  Google Scholar 

  10. Dong X (2018) Current strategies for brain drug delivery. Theranostics 8(6):1481–1493. https://doi.org/10.7150/thno.21254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Omidi Y, Barar J (2012) Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts 2(1):5–22. https://doi.org/10.5681/bi.2012.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clarke J, Penas C, Pastori C, Komotar RJ, Bregy A, Shah AH, Wahlestedt C, Ayad NG (2013) Epigenetic pathways and glioblastoma treatment. Epigenetics 8(8):785–795. https://doi.org/10.4161/epi.25440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedmann-Morvinski D (2014) Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 19(5):327–336

    Article  PubMed  Google Scholar 

  14. Pointer KB, Clark PA, Zorniak M, Alrfaei BM, Kuo JS (2014) Glioblastoma cancer stem cells: biomarker and therapeutic advances. Neurochem Int 71:1–7. https://doi.org/10.1016/j.neuint.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Veliz I, Loo Y, Castillo O, Karachaliou N, Nigro O, Rosell R (2015) Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future? Ann Transl Med 3(1):7. https://doi.org/10.3978/j.issn.2305-5839.2014.10.06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henson JW, Gaviani P, Gonzalez RG (2005) MRI in treatment of adult gliomas. Lancet Oncol 6(3):167–175. https://doi.org/10.1016/s1470-2045(05)01767-5

    Article  PubMed  Google Scholar 

  17. Henson JW, Gonzalez RG (2004) Neuroimaging in glioma therapy. Expert Rev Neurother 4(4):665–671. https://doi.org/10.1586/14737175.4.4.665

    Article  PubMed  Google Scholar 

  18. Lemort M, Canizares-Perez AC, Van der Stappen A, Kampouridis S (2007) Progress in magnetic resonance imaging of brain tumours. Curr Opin Oncol 19(6):616–622. https://doi.org/10.1097/CCO.0b013e3282f076b2

    Article  PubMed  Google Scholar 

  19. Rees J (2003) Advances in magnetic resonance imaging of brain tumours. Curr Opin Neurol 16(6):643–650. https://doi.org/10.1097/01.wco.0000102626.38669.b9

    Article  PubMed  Google Scholar 

  20. Brismar J, Stromblad LG, Salford LG (1978) Impact of CT in the neurosurgical management of intracranial tumors. Neuroradiology 16:506–509

    Article  CAS  PubMed  Google Scholar 

  21. Baker HL Jr, Houser OW, Campbell JK (1980) National Cancer Institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms. I. Overall results. Radiology 136(1):91–96. https://doi.org/10.1148/radiology.136.1.7384529

    Article  PubMed  Google Scholar 

  22. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science (New York, NY) 171(3976):1151–1153

    Article  CAS  Google Scholar 

  23. Iv M, Yoon BC, Heit JJ, Fischbein N, Wintermark M (2018) Current clinical state of advanced magnetic resonance imaging for brain tumor diagnosis and follow up. Semin Roentgenol 53(1):45–61. https://doi.org/10.1053/j.ro.2017.11.005

    Article  PubMed  Google Scholar 

  24. Villanueva-Meyer JE, Mabray MC, Cha S (2017) Current clinical brain tumor imaging. Neurosurgery 81(3):397–415. https://doi.org/10.1093/neuros/nyx103

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mabray MC, Barajas RF Jr, Cha S (2015) Modern brain tumor imaging. Brain Tumor Res Treat 3(1):8–23. https://doi.org/10.14791/btrt.2015.3.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Castillo M (2014) History and evolution of brain tumor imaging: insights through radiology. Radiology 273(2 Suppl):S111–S125. https://doi.org/10.1148/radiol.14140130

    Article  PubMed  Google Scholar 

  27. Anderson MD, Colen RR, Tremont-Lukats IW (2014) Imaging mimics of primary malignant tumors of the central nervous system (CNS). Curr Oncol Rep 16(8):399. https://doi.org/10.1007/s11912-014-0399-8

    Article  CAS  PubMed  Google Scholar 

  28. Huisman TA (2009) Tumor-like lesions of the brain. Cancer Imaging 9(Spec A):S10–S13. https://doi.org/10.1102/1470-7330.2009.9003

    Article  PubMed  PubMed Central  Google Scholar 

  29. Okamoto K, Furusawa T, Ishikawa K, Quadery FA, Sasai K, Tokiguchi S (2004) Mimics of brain tumor on neuroimaging: part II. Radiat Med 22(3):135–142

    PubMed  Google Scholar 

  30. Okamoto K, Furusawa T, Ishikawa K, Quadery FA, Sasai K, Tokiguchi S (2004) Mimics of brain tumor on neuroimaging: part I. Radiat Med 22(2):63–76

    PubMed  Google Scholar 

  31. Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T (1993) Astrocytic gliomas: MRI and pathological grade. Acta Med Okayama 47(6):383–389. https://doi.org/10.18926/amo/31566

    Article  CAS  PubMed  Google Scholar 

  32. Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T (1994) Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology 36(4):308–310

    Article  CAS  PubMed  Google Scholar 

  33. Chaichana KL, McGirt MJ, Niranjan A, Olivi A, Burger PC, Quinones-Hinojosa A (2009) Prognostic significance of contrast-enhancing low-grade gliomas in adults and a review of the literature. Neurol Res 31(9):931–939. https://doi.org/10.1179/174313209x395454

    Article  PubMed  Google Scholar 

  34. Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RG (1990) Gliomas: classification with MR imaging. Radiology 174(2):411–415. https://doi.org/10.1148/radiology.174.2.2153310

    Article  CAS  PubMed  Google Scholar 

  35. Mihara F, Numaguchi Y, Rothman M, Sato S, Fiandaca MS (1995) MR imaging of adult supratentorial astrocytomas: an attempt of semi-automatic grading. Radiat Med 13(1):5–9

    CAS  PubMed  Google Scholar 

  36. Pierallini A, Bonamini M, Bozzao A, Pantano P, Stefano DD, Ferone E, Raguso M, Bosman C, Bozzao L (1997) Supratentorial diffuse astrocytic tumours: proposal of an MRI classification. Eur Radiol 7(3):395–399. https://doi.org/10.1007/s003300050173

    Article  CAS  PubMed  Google Scholar 

  37. Upadhyay N, Waldman AD (2011) Conventional MRI evaluation of gliomas. Br J Radiol 84(Spec 2):S107–S111. https://doi.org/10.1259/bjr/65711810

    Article  PubMed  PubMed Central  Google Scholar 

  38. Malone H, Yang J, Hershman DL, Wright JD, Bruce JN, Neugut AI (2015) Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg 84(4):1084–1089. https://doi.org/10.1016/j.wneu.2015.05.025

    Article  PubMed  Google Scholar 

  39. Yong RL, Lonser RR (2013) Safety of closed brain biopsy: population-based studies weigh in. World Neurosurg 79(1):53–54. https://doi.org/10.1016/j.wneu.2012.05.016

    Article  PubMed  Google Scholar 

  40. Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, Wildrick DM, Sawaya R (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-Oncology 3(3):193–200. https://doi.org/10.1093/neuonc/3.3.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kelly PJ (1992) Stereotactic resection and its limitations in glial neoplasms. Stereotact Funct Neurosurg 59(1–4):84–91. https://doi.org/10.1159/000098922

    Article  CAS  PubMed  Google Scholar 

  42. Jakola AS, Skjulsvik AJ, Myrmel KS, Sjavik K, Unsgard G, Torp SH, Aaberg K, Berg T, Dai HY, Johnsen K, Kloster R, Solheim O (2017) Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol 28(8):1942–1948. https://doi.org/10.1093/annonc/mdx230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jakola AS, Unsgard G, Myrmel KS, Kloster R, Torp SH, Losvik OK, Lindal S, Solheim O (2013) Surgical strategy in grade II astrocytoma: a population-based analysis of survival and morbidity with a strategy of early resection as compared to watchful waiting. Acta Neurochir 155(12):2227–2235. https://doi.org/10.1007/s00701-013-1869-8

    Article  PubMed  Google Scholar 

  44. Whittle IR (2010) What is the place of conservative management for adult supratentorial low-grade glioma? Adv Tech Stand Neurosurg 35:65–79

    Article  CAS  PubMed  Google Scholar 

  45. Wang LL, Leach JL, Breneman JC, McPherson CM, Gaskill-Shipley MF (2014) Critical role of imaging in the neurosurgical and radiotherapeutic management of brain tumors. Radiographics 34(3):702–721. https://doi.org/10.1148/rg.343130156

    Article  PubMed  Google Scholar 

  46. Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49(4):436–440

    Article  CAS  PubMed  Google Scholar 

  47. Pronin IN, Holodny AI, Petraikin AV (1997) MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology 39(5):348–350

    Article  CAS  PubMed  Google Scholar 

  48. Hawighorst H, Schreiber W, Knopp MV, Essig M, Engenhart-Cabilic R, Brix G, van Kaick G (1996) Macroscopic tumor volume of malignant glioma determined by contrast-enhanced magnetic resonance imaging with and without magnetization transfer contrast. Magn Reson Imaging 14(10):1119–1126

    Article  CAS  PubMed  Google Scholar 

  49. Liu S, Wang Y, Xu K, Wang Z, Fan X, Zhang C, Li S, Qiu X, Jiang T (2017) Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging. Sci Rep 7(1):8302. https://doi.org/10.1038/s41598-017-08862-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu CX, Lin GS, Lin ZX, Zhang JD, Liu SY, Zhou CF (2015) Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J Surg Oncol 13:97. https://doi.org/10.1186/s12957-015-0496-7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, Wintermark M, Jilwan M, Raghavan P, Huang E, Clifford RJ, Mongkolwat P, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, Saltz J, Flanders A, Brat DJ (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569. https://doi.org/10.1148/radiol.13120118

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pierallini A, Bonamini M, Pantano P, Palmeggiani F, Raguso M, Osti MF, Anaveri G, Bozzao L (1998) Radiological assessment of necrosis in glioblastoma: variability and prognostic value. Neuroradiology 40(3):150–153

    Article  CAS  PubMed  Google Scholar 

  53. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neuro-Oncol 27(1):65–73

    Article  CAS  Google Scholar 

  54. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26(10):2466–2474

    PubMed  PubMed Central  Google Scholar 

  55. Sarmiento JM, Nuno M, Ortega A, Mukherjee D, Fan X, Black KL, Patil CG (2014) Cystic glioblastoma: an evaluation of IDH1 status and prognosis. Neurosurgery 74(1):71–75.: discussion 75-76. https://doi.org/10.1227/neu.0000000000000200

    Article  PubMed  Google Scholar 

  56. Pallud J, Capelle L, Taillandier L, Fontaine D, Mandonnet E, Guillevin R, Bauchet L, Peruzzi P, Laigle-Donadey F, Kujas M, Guyotat J, Baron MH, Mokhtari K, Duffau H (2009) Prognostic significance of imaging contrast enhancement for WHO grade II gliomas. Neuro-Oncology 11(2):176–182. https://doi.org/10.1215/15228517-2008-066

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Wang K, Wang J, Li S, Ma J, Dai J, Jiang T (2016) Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients. Neuroradiology 58(4):367–374. https://doi.org/10.1007/s00234-016-1640-y

    Article  PubMed  Google Scholar 

  58. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  59. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59(6):947–949

    Article  CAS  PubMed  Google Scholar 

  60. Chaichana KL, Jusue-Torres I, Lemos AM, Gokaslan A, Cabrera-Aldana EE, Ashary A, Olivi A, Quinones-Hinojosa A (2014) The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors? J Neuro-Oncol 120(3):625–634. https://doi.org/10.1007/s11060-014-1597-9

    Article  Google Scholar 

  61. Chan K, Bhandari M (2011) Three-minute critical appraisal of a case series article. Indian J Orthop 45(2):103–104. https://doi.org/10.4103/0019-5413.77126

    Article  PubMed  PubMed Central  Google Scholar 

  62. Westhoff CL (1995) Epidemiologic studies: pitfalls in interpretation. Dialogues Contracept 4(5):5–6. 8

    CAS  PubMed  Google Scholar 

  63. Kempen JH (2011) Appropriate use and reporting of uncontrolled case series in the medical literature. Am J Ophthalmol 151(1):7–10.e11. https://doi.org/10.1016/j.ajo.2010.08.047

    Article  PubMed  PubMed Central  Google Scholar 

  64. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2008) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008

    Article  Google Scholar 

  65. Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, Jolesz FA (2006) Supratentorial low-grade glioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology 239(2):506–513. https://doi.org/10.1148/radiol.2392050661

    Article  PubMed  Google Scholar 

  66. Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95(5):735–745. https://doi.org/10.3171/jns.2001.95.5.0735

    Article  CAS  PubMed  Google Scholar 

  67. Tortosa A, Vinolas N, Villa S, Verger E, Gil JM, Brell M, Caral L, Pujol T, Acebes JJ, Ribalta T, Ferrer I, Graus F (2003) Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer 97(4):1063–1071. https://doi.org/10.1002/cncr.11120

    Article  PubMed  Google Scholar 

  68. Kaur G, Bloch O, Jian BJ, Kaur R, Sughrue ME, Aghi MK, McDermott MW, Berger MS, Chang SM, Parsa AT (2011) A critical evaluation of cystic features in primary glioblastoma as a prognostic factor for survival. J Neurosurg 115(4):754–759. https://doi.org/10.3171/2011.5.Jns11128

    Article  PubMed  Google Scholar 

  69. Bohman LE, Swanson KR, Moore JL, Rockne R, Mandigo C, Hankinson T, Assanah M, Canoll P, Bruce JN (2010) Magnetic resonance imaging characteristics of glioblastoma multiforme: implications for understanding glioma ontogeny. Neurosurgery 67(5):1319–1327.; discussion 1327-1318. https://doi.org/10.1227/NEU.0b013e3181f556ab

    Article  PubMed  Google Scholar 

  70. Utsuki S, Oka H, Suzuki S, Shimizu S, Tanizaki Y, Kondo K, Tanaka S, Kawano N, Fujii K (2006) Pathological and clinical features of cystic and noncystic glioblastomas. Brain Tumor Pathol 23(1):29–34. https://doi.org/10.1007/s10014-006-0195-8

    Article  PubMed  Google Scholar 

  71. Maldaun MV, Suki D, Lang FF, Prabhu S, Shi W, Fuller GN, Wildrick DM, Sawaya R (2004) Cystic glioblastoma multiforme: survival outcomes in 22 cases. J Neurosurg 100(1):61–67. https://doi.org/10.3171/jns.2004.100.1.0061

    Article  PubMed  Google Scholar 

  72. Lote K, Egeland T, Hager B, Skullerud K, Hirschberg H (1998) Prognostic significance of CT contrast enhancement within histological subgroups of intracranial glioma. J Neuro-Oncol 40(2):161–170

    Article  CAS  Google Scholar 

  73. Sharma S, Jain SK, Sinha VD (2017) Use of preoperative ependymal enhancement on magnetic resonance imaging brain as a marker of grade of glioma. J Neurosci Rural Pract 8(4):545–550. https://doi.org/10.4103/jnrp.jnrp_78_17

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reyes-Botero G, Dehais C, Idbaih A, Martin-Duverneuil N, Lahutte M, Carpentier C, Letouze E, Chinot O, Loiseau H, Honnorat J, Ramirez C, Moyal E, Figarella-Branger D, Ducray F (2014) Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression. Neuro-Oncology 16(5):662–670. https://doi.org/10.1093/neuonc/not235

    Article  CAS  PubMed  Google Scholar 

  75. White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? AJNR Am J Neuroradiol 26(4):784–790

    PubMed  PubMed Central  Google Scholar 

  76. Earnest F, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166(3):823–827. https://doi.org/10.1148/radiology.166.3.2829270

    Article  PubMed  Google Scholar 

  77. Graif M, Bydder GM, Steiner RE, Niendorf P, Thomas DG, Young IR (1985) Contrast-enhanced MR imaging of malignant brain tumors. AJNR Am J Neuroradiol 6(6):855–862

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu CX, Lin GS, Lin ZX, Zhang JD, Chen L, Liu SY, Tang WL, Qiu XX, Zhou CF (2015) Peritumoral edema on magnetic resonance imaging predicts a poor clinical outcome in malignant glioma. Oncol Lett 10(5):2769–2776. https://doi.org/10.3892/ol.2015.3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Min ZG, Niu C, Rana N, Ji HM, Zhang M (2013) Differentiation of pure vasogenic edema and tumor-infiltrated edema in patients with peritumoral edema by analyzing the relationship of axial and radial diffusivities on 3.0T MRI. Clin Neurol Neurosurg 115(8):1366–1370. https://doi.org/10.1016/j.clineuro.2012.12.031

    Article  PubMed  Google Scholar 

  80. Liu SY, Mei WZ, Lin ZX (2013) Pre-operative peritumoral edema and survival rate in glioblastoma multiforme. Onkologie 36(11):679–684. https://doi.org/10.1159/000355651

    Article  CAS  PubMed  Google Scholar 

  81. Seidel C, Dorner N, Osswald M, Wick A, Platten M, Bendszus M, Wick W (2011) Does age matter?—a MRI study on peritumoral edema in newly diagnosed primary glioblastoma. BMC Cancer 11:127. https://doi.org/10.1186/1471-2407-11-127

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schoenegger K, Oberndorfer S, Wuschitz B, Struhal W, Hainfellner J, Prayer D, Heinzl H, Lahrmann H, Marosi C, Grisold W (2009) Peritumoral edema on MRI at initial diagnosis: an independent prognostic factor for glioblastoma? Eur J Neurol 16(7):874–878. https://doi.org/10.1111/j.1468-1331.2009.02613.x

    Article  CAS  PubMed  Google Scholar 

  83. Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R (2004) Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 10(1 Pt 1):212–221

    Article  CAS  PubMed  Google Scholar 

  84. Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, Sawaya R (2002) Necrosis and glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery 51(1):2–12. discussion 12-13

    Article  PubMed  Google Scholar 

  85. Barker FG 2nd, Davis RL, Chang SM, Prados MD (1996) Necrosis as a prognostic factor in glioblastoma multiforme. Cancer 77(6):1161–1166

    Article  PubMed  Google Scholar 

  86. Lohle PN, Verhagen IT, Teelken AW, Blaauw EH, Go KG (1992) The pathogenesis of cerebral gliomatous cysts. Neurosurgery 30(2):180–185

    Article  CAS  PubMed  Google Scholar 

  87. Afra D, Norman D, Levin VA (1980) Cysts in malignant gliomas. Identification by computerized tomography. J Neurosurg 53(6):821–825. https://doi.org/10.3171/jns.1980.53.6.0821

    Article  CAS  PubMed  Google Scholar 

  88. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA (2017) Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging 46(1):115–123. https://doi.org/10.1002/jmri.25497

    Article  PubMed  Google Scholar 

  89. Johnson DR, Diehn FE, Giannini C, Jenkins RB, Jenkins SM, Parney IF, Kaufmann TJ (2017) Genetically defined oligodendroglioma is characterized by indistinct tumor borders at MRI. AJNR Am J Neuroradiol 38(4):678–684. https://doi.org/10.3174/ajnr.A5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chaddad A, Desrosiers C, Hassan L, Tanougast C (2016) A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Br J Radiol 89(1068):20160575. https://doi.org/10.1259/bjr.20160575

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lee JW, Wen PY, Hurwitz S, Black P, Kesari S, Drappatz J, Golby AJ, Wells WM 3rd, Warfield SK, Kikinis R, Bromfield EB (2010) Morphological characteristics of brain tumors causing seizures. Arch Neurol 67(3):336–342. https://doi.org/10.1001/archneurol.2010.2

    Article  PubMed  PubMed Central  Google Scholar 

  92. Scherer M, Jungk C, Younsi A, Kickingereder P, Muller S, Unterberg A (2016) Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas. Neurosurg Focus 40(3):E4. https://doi.org/10.3171/2015.11.Focus15542

    Article  PubMed  Google Scholar 

  93. Siegal T (2016) Clinical relevance of prognostic and predictive molecular markers in gliomas. Adv Tech Stand Neurosurg 43:91–108. https://doi.org/10.1007/978-3-319-21359-0_4

    Article  Google Scholar 

  94. Morris MA, Saboury B, Burkett B, Gao J, Siegel EL (2018) Reinventing radiology: big data and the future of medical imaging. J Thorac Imaging 33(1):4–16. https://doi.org/10.1097/rti.0000000000000311

    Article  PubMed  Google Scholar 

  95. Lee CH, Yoon HJ (2017) Medical big data: promise and challenges. Kidney Res Clin Pract 36(1):3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kaptchuk TJ (2003) Effect of interpretive bias on research evidence. BMJ 326(7404):1453–1455. https://doi.org/10.1136/bmj.326.7404.1453

    Article  PubMed  PubMed Central  Google Scholar 

  97. Henker C, Kriesen T, Glass A, Schneider B, Piek J (2017) Volumetric quantification of glioblastoma: experiences with different measurement techniques and impact on survival. J Neuro-Oncol 135(2):391–402. https://doi.org/10.1007/s11060-017-2587-5

    Article  CAS  Google Scholar 

  98. Shah GD, Kesari S, Xu R, Batchelor TT, O'Neill AM, Hochberg FH, Levy B, Bradshaw J, Wen PY (2006) Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro-Oncology 8(1):38–46. https://doi.org/10.1215/s1522851705000529

    Article  PubMed  PubMed Central  Google Scholar 

  99. Smedley NF, Ellingson BM, Cloughesy TF, Hsu W (2018) Longitudinal patterns in clinical and imaging measurements predict residual survival in glioblastoma patients. Sci Rep 8(1):14429. https://doi.org/10.1038/s41598-018-32397-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kanaly CW, Ding D, Mehta AI, Waller AF, Crocker I, Desjardins A, Reardon DA, Friedman AH, Bigner DD, Sampson JH (2011) A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS One 6(1):e16031. https://doi.org/10.1371/journal.pone.0016031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ellingson BM, Wen PY, Cloughesy TF (2018) Evidence and context of use for contrast enhancement as a surrogate of disease burden and treatment response in malignant glioma. Neuro-Oncology 20(4):457–471. https://doi.org/10.1093/neuonc/nox193

    Article  CAS  PubMed  Google Scholar 

  102. Butler AR, Horii SC, Kricheff II, Shannon MB, Budzilovich GN (1978) Computed tomography in astrocytomas. A statistical analysis of the parameters of malignancy and the positive contrast-enhanced CT scan. Radiology 129(2):433–439. https://doi.org/10.1148/129.2.433

    Article  CAS  PubMed  Google Scholar 

  103. Burger PC, Dubois PJ, Schold SC Jr, Smith KR Jr, Odom GL, Crafts DC, Giangaspero F (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58(2):159–169. https://doi.org/10.3171/jns.1983.58.2.0159

    Article  CAS  PubMed  Google Scholar 

  104. Lilja A, Bergstrom K, Spannare B, Olsson Y (1981) Reliability of computed tomography in assessing histopathological features of malignant supratentorial gliomas. J Comput Assist Tomogr 5(5):625–636

    CAS  PubMed  Google Scholar 

  105. Lewander R, Bergstrom M, Boethius J, Collins VP, Edner G, Greitz T, Willems J (1978) Stereotactic computer tomography for biopsy of gliomas. Acta Radiol Diagn 19(6):867–888

    Article  CAS  Google Scholar 

  106. Panigrahy A, Bluml S (2009) Neuroimaging of pediatric brain tumors: from basic to advanced magnetic resonance imaging (MRI). J Child Neurol 24(11):1343–1365. https://doi.org/10.1177/0883073809342129

    Article  PubMed  Google Scholar 

  107. Shin JH, Lee HK, Khang SK, Kim DW, Jeong AK, Ahn KJ, Choi CG, Suh DC (2002) Neuronal tumors of the central nervous system: radiologic findings and pathologic correlation. Radiographics 22(5):1177–1189. https://doi.org/10.1148/radiographics.22.5.g02se051177

    Article  PubMed  Google Scholar 

  108. Leighton C, Fisher B, Bauman G, Depiero S, Stitt L, MacDonald D, Cairncross G (1997) Supratentorial low-grade glioma in adults: an analysis of prognostic factors and timing of radiation. J Clin Oncol Off J Am Soc Clin Oncol 15(4):1294–1301. https://doi.org/10.1200/jco.1997.15.4.1294

    Article  CAS  Google Scholar 

  109. Kreth FW, Faist M, Rossner R, Volk B, Ostertag CB (1997) Supratentorial World Health Organization grade 2 astrocytomas and oligoastrocytomas. A new pattern of prognostic factors. Cancer 79(2):370–379

    Article  CAS  PubMed  Google Scholar 

  110. Philippon JH, Clemenceau SH, Fauchon FH, Foncin JF (1993) Supratentorial low-grade astrocytomas in adults. Neurosurgery 32(4):554–559

    Article  CAS  PubMed  Google Scholar 

  111. Bauman G, Lote K, Larson D, Stalpers L, Leighton C, Fisher B, Wara W, MacDonald D, Stitt L, Cairncross JG (1999) Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int J Radiat Oncol Biol Phys 45(4):923–929

    Article  CAS  PubMed  Google Scholar 

  112. Cohen-Gadol AA, DiLuna ML, Bannykh SI, Piepmeier JM, Spencer DD (2004) Non-enhancing de novo glioblastoma: report of two cases. Neurosurg Rev 27(4):281–285. https://doi.org/10.1007/s10143-004-0346-5

    Article  PubMed  Google Scholar 

  113. Okamoto K, Ito J, Takahashi N, Ishikawa K, Furusawa T, Tokiguchi S, Sakai K (2002) MRI of high-grade astrocytic tumors: early appearance and evolution. Neuroradiology 44(5):395–402. https://doi.org/10.1007/s00234-001-0725-3

    Article  CAS  PubMed  Google Scholar 

  114. Moore-Stovall J, Venkatesh R (1993) Serial nonenhancing magnetic resonance imaging scans of high grade glioblastoma multiforme. J Natl Med Assoc 85(2):122–128

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chamberlain MC, Murovic JA, Levin VA (1988) Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 38(9):1371–1374

    Article  CAS  PubMed  Google Scholar 

  116. Shukla G, Alexander GS, Bakas S, Nikam R, Talekar K, Palmer JD, Shi W (2017) Advanced magnetic resonance imaging in glioblastoma: a review. Chin Clin Oncol 6(4):40. https://doi.org/10.21037/cco.2017.06.28

    Article  PubMed  Google Scholar 

  117. Maia AC Jr, Malheiros SM, da Rocha AJ, Stavale JN, Guimaraes IF, Borges LR, Santos AJ, da Silva CJ, de Melo JG, Lanzoni OP, Gabbai AA, Ferraz FA (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg 101(6):970–976. https://doi.org/10.3171/jns.2004.101.6.0970

    Article  PubMed  Google Scholar 

  118. Carlson MR, Pope WB, Horvath S, Braunstein JG, Nghiemphu P, Tso CL, Mellinghoff I, Lai A, Liau LM, Mischel PS, Dong J, Nelson SF, Cloughesy TF (2007) Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res 13(9):2592–2598. https://doi.org/10.1158/1078-0432.Ccr-06-2772

    Article  CAS  PubMed  Google Scholar 

  119. Badie B, Schartner JM, Hagar AR, Prabakaran S, Peebles TR, Bartley B, Lapsiwala S, Resnick DK, Vorpahl J (2003) Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res 9(2):872–877

    CAS  PubMed  Google Scholar 

  120. Lin ZX (2013) Glioma-related edema: new insight into molecular mechanisms and their clinical implications. Chin J Cancer 32(1):49–52. https://doi.org/10.5732/cjc.012.10242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ruiz-Ontanon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparis-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL (2013) Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue. Stem Cells 31(6):1075–1085. https://doi.org/10.1002/stem.1349

    Article  CAS  PubMed  Google Scholar 

  122. Yamahara T, Numa Y, Oishi T, Kawaguchi T, Seno T, Asai A, Kawamoto K (2010) Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging. Brain Tumor Pathol 27(2):81–87. https://doi.org/10.1007/s10014-010-0275-7

    Article  PubMed  Google Scholar 

  123. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi SH, Kim JW, Chang JS, Cho JH, Kim SH, Chang JH, Suh CO (2017) Impact of including peritumoral edema in radiotherapy target volume on patterns of failure in glioblastoma following temozolomide-based chemoradiotherapy. Sci Rep 7:42148. https://doi.org/10.1038/srep42148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Strugar JG, Criscuolo GR, Rothbart D, Harrington WN (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83(4):682–689. https://doi.org/10.3171/jns.1995.83.4.0682

    Article  CAS  PubMed  Google Scholar 

  126. Pierallini A, Bonamini M, Osti MF, Pantano P, Palmeggiani F, Santoro A, Maurizi Enrici R, Bozzao L (1996) Supratentorial glioblastoma: neuroradiological findings and survival after surgery and radiotherapy. Neuroradiology 38(Suppl 1):S26–S30

    Article  PubMed  Google Scholar 

  127. Carrillo JA, Lai A, Nghiemphu PL, Kim HJ, Phillips HS, Kharbanda S, Moftakhar P, Lalaezari S, Yong W, Ellingson BM, Cloughesy TF, Pope WB (2012) Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 33(7):1349–1355. https://doi.org/10.3174/ajnr.A2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772. https://doi.org/10.1158/1078-0432.Ccr-12-3002

    Article  CAS  PubMed  Google Scholar 

  129. Oliver L, Olivier C, Marhuenda FB, Campone M, Vallette FM (2009) Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy. Curr Mol Pharmacol 2(3):263–284

    Article  CAS  PubMed  Google Scholar 

  130. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64(3):920–927

    Article  CAS  PubMed  Google Scholar 

  131. Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    Article  PubMed  Google Scholar 

  132. Adn M, Saikali S, Guegan Y, Hamlat A (2006) Pathophysiology of glioma cyst formation. Med Hypotheses 66(4):801–804. https://doi.org/10.1016/j.mehy.2005.09.048

    Article  CAS  PubMed  Google Scholar 

  133. Laws ER Jr, Taylor WF, Clifton MB, Okazaki H (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J Neurosurg 61(4):665–673. https://doi.org/10.3171/jns.1984.61.4.0665

    Article  PubMed  Google Scholar 

  134. Wiki for the VASARI feature set. Updated May 25, 2012. https://wiki.nci.nih.gov/display/CIP/VASARI

  135. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

    Article  PubMed  PubMed Central  Google Scholar 

  136. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  137. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122s–150s. https://doi.org/10.2967/jnumed.108.057307

    Article  CAS  PubMed  Google Scholar 

  138. Gwyther SJ (2006) Current standards for response evaluation by imaging techniques. Eur J Nucl Med Mol Imaging 33(Suppl 1):11–15. https://doi.org/10.1007/s00259-006-0130-6

    Article  PubMed  Google Scholar 

  139. Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, Buatti JM, Fennessy FM, Eikman EA, Kumar V, Forster KM, Wahl RL, Lieberman FS (2012) Promise and pitfalls of quantitative imaging in oncology clinical trials. Magn Reson Imaging 30(9):1301–1312. https://doi.org/10.1016/j.mri.2012.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  140. Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  141. Ou X, Pan W, Zhang X, Xiao P (2016) Skin image retrieval using Gabor wavelet texture feature. Int J Cosmet Sci 38(6):607–614. https://doi.org/10.1111/ics.12332

    Article  CAS  PubMed  Google Scholar 

  142. Dilger SK, Uthoff J, Judisch A, Hammond E, Mott SL, Smith BJ, Newell JD Jr, Hoffman EA, Sieren JC (2015) Improved pulmonary nodule classification utilizing quantitative lung parenchyma features. J Med Imaging (Bellingham) 2(4):041004. https://doi.org/10.1117/1.Jmi.2.4.041004

    Article  Google Scholar 

  143. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones AK, Court L (2015) Measuring computed tomography scanner variability of radiomics features. Investig Radiol 50(11):757–765. https://doi.org/10.1097/RLI.0000000000000180

    Article  Google Scholar 

  144. Lu L, Ehmke RC, Schwartz LH, Zhao B (2016) Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS One 11(12):e0166550. https://doi.org/10.1371/journal.pone.0166550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim H, Park CM, Lee M, Park SJ, Song YS, Lee JH, Hwang EJ, Goo JM (2016) Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS One 11(10):e0164924. https://doi.org/10.1371/journal.pone.0164924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Labby ZE, Straus C, Caligiuri P, MacMahon H, Li P, Funaki A, Kindler HL, Armato SG (2013) Variability of tumor area measurements for response assessment in malignant pleural mesothelioma. Med Phys 40(8):081916

    Article  PubMed  PubMed Central  Google Scholar 

  147. Savio SJ, Harrison LC, Luukkaala T, Heinonen T, Dastidar P, Soimakallio S, Eskola HJ (2010) Effect of slice thickness on brain magnetic resonance image texture analysis. Biomed Eng Online 9:60. https://doi.org/10.1186/1475-925X-9-60

    Article  PubMed  PubMed Central  Google Scholar 

  148. Buch K, Kuno H, Qureshi MM, Li B, Sakai O (2018) Quantitative variations in texture analysis features dependent on MRI scanning parameters: a phantom model. J Appl Clin Med Phys 19(6):253–264. https://doi.org/10.1002/acm2.12482

    Article  PubMed  PubMed Central  Google Scholar 

  149. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22(3):1060–1075. https://doi.org/10.1016/j.neuroimage.2004.03.032

    Article  CAS  PubMed  Google Scholar 

  150. Speier W, Iglesias JE, El-Kara L, Tu Z, Arnold C (2011) Robust skull stripping of clinical glioblastoma multiforme data. Med Image Comput Comput Assist Interv 14(Pt 3):659–666

    PubMed  Google Scholar 

  151. Juntu J, Sijbers J, Van Dyck D, Gielen J (2005) Bias field correction for MRI images. In: Kurzyński M, Puchała E, Woźniak M, żołnierek A (eds) Advances in soft computing. Springer, Berlin Heidelberg, pp 543–551

    Google Scholar 

  152. Wang L, Lai H-M, Barker GJ, Miller DH, Tofts PS (1998) Correction for variations in MRI scanner sensitivity in brain studies with histogram matching. Magn Reson Med 39(2):322–327. https://doi.org/10.1002/mrm.1910390222

    Article  CAS  PubMed  Google Scholar 

  153. Nyúl LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42(6):1072–1081. https://doi.org/10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M

    Article  PubMed  Google Scholar 

  154. Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33(9):3426–3434. https://doi.org/10.1118/1.2335487

    Article  PubMed  Google Scholar 

  155. Madabhushi A, Udupa JK, Moonis G (2006) Comparing MR image intensity standardization against tissue characterizability of magnetization transfer ratio imaging. J Magn Reson Imaging 24(3):667–675. https://doi.org/10.1002/jmri.20658

    Article  PubMed  Google Scholar 

  156. Gispert JD, Reig S, Pascau J, Vaquero JJ, García-Barreno P, Desco M (2004) Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Hum Brain Mapp 22(2):133–144. https://doi.org/10.1002/hbm.20013

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320. https://doi.org/10.1109/TMI.2010.2046908

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  159. Zhao B, Tan Y, Tsai W-Y, Qi J, Xie C, Lu L, Schwartz LH (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6(1). https://doi.org/10.1038/srep23428

  160. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains B, Lambin P, Aerts HJWL (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7). https://doi.org/10.1371/journal.pone.0102107

  161. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2):187–201. https://doi.org/10.1109/42.700731

    Article  CAS  PubMed  Google Scholar 

  162. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  PubMed  Google Scholar 

  163. Lee M, Woo B, Kuo MD, Jamshidi N, Kim JH (2017) Quality of radiomic features in glioblastoma multiforme: impact of semi-automated tumor segmentation software. Korean J Radiol 18(3):498–509. https://doi.org/10.3348/kjr.2017.18.3.498

    Article  PubMed  PubMed Central  Google Scholar 

  164. Benson E, Pound MP, French AP, Jackson AS, Pridmore TP. Deep Hourglass for Brain Tumor Segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M,van Walsum T, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer International Publishing; 2019. p. 419–428. doi:10.1007/978-3-030-11726-9_37

    Google Scholar 

  165. Bakas S, Reyes M, Jakab A, Bauer S, et al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, andOverall Survival Prediction in the BRATS Challenge. arXiv:181102629 [cs, stat]. 2019 Apr 23;

    Google Scholar 

  166. VASARI Research Project—The cancer imaging archive (TCIA) public access—Cancer Imaging Archive Wiki

    Google Scholar 

  167. Mazurowski MA, Desjardins A, Malof JM (2013) Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro-Oncology 15(10):1389–1394. https://doi.org/10.1093/neuonc/nos335

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kong D-S, Kim J, Ryu G, You H-J, Sung JK, Han YH, Shin H-M, Lee I-H, Kim S-T, Park C-K, Choi SH, Choi JW, Seol HJ, Lee J-I, Nam D-H (2018) Quantitative radiomic profiling of glioblastoma represents transcriptomic expression. Oncotarget 9(5):6336–6345. https://doi.org/10.18632/oncotarget.23975

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ismail M, Hill V, Statsevych V, Huang R, Prasanna P, Correa R, Singh G, Bera K, Beig N, Thawani R, Madabhushi A, Aahluwalia M, Tiwari P (2018) Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study. Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5858

  170. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP, Gupta A, Singh G, Hatanpaa KJ, Sloan A, Rogers L, Madabhushi A (2016) Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. Am J Neuroradiol 37(12):2231–2236. https://doi.org/10.3174/ajnr.A4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618. https://doi.org/10.1002/mrm.22147

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of 12th International Conference on Pattern Recognition, October 1994 1994. pp 582–585 vol.581. doi:https://doi.org/10.1109/ICPR.1994.576366

  173. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  174. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2013) Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging 26(6):1141–1150. https://doi.org/10.1007/s10278-013-9600-0

    Article  PubMed  PubMed Central  Google Scholar 

  175. Jafarpour S, Sedghi Z, Amirani MC (2012) A robust brain MRI classification with GLCM features. Int J Comput Appl 37(12), 1–5.

    Google Scholar 

  176. Gnep K, Fargeas A, Gutiérrez-Carvajal RE, Commandeur F, Mathieu R, Ospina JD, Rolland Y, Rohou T, Vincendeau S, Hatt M, Acosta O, Rd C (2017) Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging 45(1):103–117. https://doi.org/10.1002/jmri.25335

    Article  PubMed  Google Scholar 

  177. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graph Image Process 4(2):172–179. https://doi.org/10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  178. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735. https://doi.org/10.1118/1.4934373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Laws KI Rapid texture identification. In: 1980, 1980. International Society for Optics and Photonics, pp 376–382

    Google Scholar 

  180. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27(10):4188–4197

    Article  PubMed  Google Scholar 

  181. Marĉelja S (1980) Mathematical description of the responses of simple cortical cells. JOSA 70(11):1297–1300

    Article  Google Scholar 

  182. Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E, Lanzman B, Vajapeyam S, Vitanza NA, Fisher PG, Cho YJ, Laughlin S, Ramaswamy V, Taylor MD, Cheshier SH, Grant GA, Poussaint TY, Gevaert O, Yeom KW (2018) MR imaging–based radiomic signatures of distinct molecular subgroups of medulloblastoma. Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5899

  183. Prasanna P, Tiwari P, Madabhushi A (2016) Co-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptor. Sci Rep 6. (1 SRC – BaiduScholar). https://doi.org/10.1038/srep37241

  184. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  185. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157–1182

    Google Scholar 

  186. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344

    Article  CAS  PubMed  Google Scholar 

  187. Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3(2):185–205. https://doi.org/10.1142/s0219720005001004 PMID: 15852500

    Google Scholar 

  188. Cho H-H, Lee S-H, Kim J, Park H (2018) Classification of the glioma grading using radiomics analysis. PeerJ 6:e5982

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yang HH, Moody J (1999) Feature Selection Based on Joint Mutual Information. In Proceedings of International ICSC Symposium on Advances in Intelligent DataAnalysis. pp. 22–25.

    Google Scholar 

  190. Ginsburg SB, Viswanath SE, Bloch BN, Rofsky NM, Genega EM, Lenkinski RE, Madabhushi A (2015) Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors. J Magn Reson Imaging 41(5):1383–1393

    Article  PubMed  Google Scholar 

  191. Fleuret F (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5:1531–1555

    Google Scholar 

  192. Frank M, Wolfe P (1956) An algorithm for quadratic programming. Naval Res Logistics Quarterly 3(1–2):95–110

    Article  Google Scholar 

  193. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B Methodol 58:267–288

    Google Scholar 

  194. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Method 67(2):301–320

    Article  Google Scholar 

  195. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  196. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  197. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  198. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Deng L (2014) Deep learning: methods and applications. Foundations Trends Signal Process 7(3–4):197–387. https://doi.org/10.1561/2000000039

    Article  Google Scholar 

  200. Deng L (2000) Deep learning: methods and applications. Found Trends Signal Process (3–4). 7197387 SRC – BaiduScholar. https://doi.org/10.1561/2000000039

  201. Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, Zhai G (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 7(1):10353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Bera K, Velcheti V, Madabhushi A (2018) Novel quantitative imaging for predicting response to therapy: techniques and clinical applications. Am Soc Clin Oncol Educ Book 38:1008–1018

    Article  PubMed  Google Scholar 

  203. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  204. Halkidi M, Batistakis Y, Vazirgiannis M (2002) Cluster validity methods: part I. ACM SIGMOD Rec 31(2):40–45

    Article  Google Scholar 

  205. Rand WM, J. (1971) Objective criteria for the evaluation of clustering methods. Stat Assoc 66. (336 SRC - BaiduScholar):846–850

    Article  Google Scholar 

  206. Abundez I, Arizmendi A, Quiroz EMJ, Rendón E (2011) Internal versus external cluster validation indexes. Int Commun 5. (1 SRC - BaiduScholar):27–34

    Google Scholar 

  207. Sasikala M, Kumaravel N (2008) A wavelet-based optimal texture feature set for classification of brain tumours. J Med Eng Technol 32(3):198–205

    Article  CAS  PubMed  Google Scholar 

  208. Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307

    Article  PubMed  Google Scholar 

  209. Gutierrez DR, Awwad A, Meijer L, Manita M, Jaspan T, Dineen RA, Grundy RG, Auer DP (2014) Metrics and textural features of MRI diffusion to improve classification of pediatric posterior Fossa tumors. Am J Neuroradiol 35(5):1009–1015. https://doi.org/10.3174/ajnr.A3784

    Article  Google Scholar 

  210. Kickingereder P, Burth S, Wick A, Götz M, Eidel O, Schlemmer H-P, Maier-Hein KH, Wick W, Bendszus M, Radbruch A, Bonekamp D (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3):880–889

    Article  PubMed  Google Scholar 

  211. McGarry SD, Hurrell SL, Kaczmarowski AL, Cochran EJ, Connelly J, Rand SD, Schmainda KM, LaViolette PS (2016) Magnetic resonance imaging-based Radiomic profiles predict patient prognosis in newly diagnosed Glioblastoma before therapy. Tomography (Ann Arbor, Mich) 2(3):223–228

    Article  Google Scholar 

  212. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, Dahmane N, Martinez-Lage M, Biros G, Wolf RL, Bilello M, O'Rourke DM, Davatzikos C (2015) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18(3):417–425. https://doi.org/10.1093/neuonc/nov127

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lee J, Narang S, Martinez J, Rao G, Rao A (2015) Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS One 10(9):e0136557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Zhou M, Hall L, Goldgof D, Russo R, Balagurunathan Y, Gillies R, Gatenby R (2014) Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: preliminary results. Transl Oncol 7(1):5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bae S, Choi YS, Ahn SS, Chang JH, Kang S-G, Kim EH, Kim SH, Lee S-K (2018) Radiomic MRI Phenotyping of glioblastoma: improving survival prediction. Radiology 289(3):797–806

    Article  PubMed  Google Scholar 

  216. Hu X, Wong KK, Young GS, Guo L, Wong ST (2011) Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 33(2):296–305

    Article  PubMed  PubMed Central  Google Scholar 

  217. Lohmann P, Stoffels G, Ceccon G, Rapp M, Sabel M, Filss CP, Kamp MA, Stegmayr C, Neumaier B, Shah NJ, Langen K-J, Galldiks N (2017) Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. Eur Radiol 27(7):2916–2927

    Article  PubMed  Google Scholar 

  218. Kickingereder P, Götz M, Muschelli J, Wick A, Neuberger U, Shinohara RT, Sill M, Nowosielski M, Schlemmer H-P, Radbruch A, Wick W, Bendszus M, Maier-Hein KH, Bonekamp D (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22(23):5765–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  220. Lu C-F, Hsu F-T, Hsieh KL-C, Kao Y-CJ, Cheng S-J, Hsu JB-K, Tsai P-H, Chen R-J, Huang C-C, Yen Y, Chen C-Y (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24(18):4429–4436

    Article  PubMed  Google Scholar 

  221. Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA, Ligon KL, Alexander BM, Wen PY, Huang RY (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro-Oncology 19(1):109–117

    Article  CAS  PubMed  Google Scholar 

  222. Bakas S, Akbari H, Pisapia J, Martinez-Lage M, Rozycki M, Rathore S, Dahmane N, O'Rourke DM, Davatzikos C (2017) In Vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-index. Clin Cancer Res 23(16):4724–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Beig N, Patel J, Prasanna P, Hill V, Gupta A, Correa R, Bera K, Singh S, Partovi S, Varadan V (2018) Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Sci Rep 8(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Levner I, Drabycz S, Roldan G, De Robles P, Cairncross JG, Mitchell R (2009) Predicting MGMT methylation status of glioblastomas from MRI texture. In: Yang G-Z, Hawkes D, Rueckert D, Noble A, Taylor C (eds) Medical image computing and computer-assisted intervention—MICCAI 2009, vol 5762. Springer, Berlin, Heidelberg, pp 522–530

    Chapter  Google Scholar 

  225. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Wick A, Eidel O, Schlemmer H-P, Radbruch A, Debus J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, von Deimling A, Bendszus M, Capper D (2016) Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281(3):907–918. https://doi.org/10.1148/radiol.2016161382

    Article  PubMed  Google Scholar 

  226. Hu LS, Ning S, Eschbacher JM, Baxter LC, Gaw N, Ranjbar S, Plasencia J, Dueck AC, Peng S, Smith KA, Nakaji P, Karis JP, Quarles CC, Wu T, Loftus JC, Jenkins RB, Sicotte H, Kollmeyer TM, O'Neill BP, Elmquist W, Hoxworth JM, Frakes D, Sarkaria J, Swanson KR, Tran NL, Li J, Mitchell JR (2017) Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology 19(1):128–137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by The Ohio Third Frontier Technology Validation Fund and The Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering at Case Western Reserve University.

Department of Defense Peer Reviewed Cancer Research Program (PRCRP) Career Development Award.

Dana Foundation David Mahoney Neuroimaging Program.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the U.S. Department of Veterans Affairs, the Department of Defense, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco C. Pinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinho, M.C., Bera, K., Beig, N., Tiwari, P. (2021). MRI Morphometry in Brain Tumors: Challenges and Opportunities in Expert, Radiomic, and Deep-Learning-Based Analyses. In: Seano, G. (eds) Brain Tumors. Neuromethods, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0856-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0856-2_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0855-5

  • Online ISBN: 978-1-0716-0856-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics