Skip to main content

Binary Classification for Failure Risk Assessment

  • Protocol
  • First Online:
Translational Bioinformatics for Therapeutic Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2194))

Abstract

Survival analysis is tremendously powerful, and is a popular methodology for analyzing time to event models in bioinformatics. Furthermore, several of its extensions can simultaneously perform variable selection in conjunction with model estimation. While this flexibility is extremely desirable, under certain scenarios, binary class variable selection and classification methods might provide more reliable risk estimates. Synthetic simulations and real data case studies suggest that when (1) randomly censored points comprise only a small portion of data, (2) biological markers are weak, (3) it is desired to compute risk across predetermined time intervals, and (4) the assumptions of the competing time to event models are violated, binary class models tend to perform superior. In practice, it might be prudent to test both model families to guarantee adequate analysis. Here we describe the pipeline of binary class feature selection and classification for time to event risk assessment.

The authors Ali Foroughi pour and Ian Loveless contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    QIAGEN Inc., https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis.

References

  1. Beirlant J, Dudewicz EJ, Györfi L, Van der Meulen EC (1997) Nonparametric entropy estimation: an overview. Int J Math Stat Sci 6(1):17–39

    Google Scholar 

  2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine learning, 1st edn. Springer, New York

    Google Scholar 

  4. Foroughi pour A, Dalton, LA (2017) Multiclass Bayesian feature selection. In: IEEE global conference on signal and information processing (GlobalSIP). IEEE, Piscataway, pp 725–729

    Google Scholar 

  5. Foroughi pour A, Dalton LA (2017) Integrating prior information with Bayesian feature selection. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics. ACM, New York, pp 610–610

    Google Scholar 

  6. Foroughi pour A, Dalton LA (2017) Robust feature selection for block covariance Bayesian models. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, pp 2696–2700

    Google Scholar 

  7. Foroughi pour A, Dalton LA (2018) Bayesian feature selection with data integration. In: Proceedings of the 2018 IEEE global conference on signal and information processing (GlobalSIP), pp 504–508

    Google Scholar 

  8. Foroughi pour A, Dalton LA (2018) Biomarker discovery via optimal Bayesian feature filtering for structured multiclass data. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. ACM, New York, pp 331–340

    Google Scholar 

  9. Foroughi pour A, Dalton LA (2018) Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure. BMC Bioinf 19(3):R70

    Google Scholar 

  10. Foroughi pour A, Dalton LA (2018) Optimal Bayesian filtering for biomarker discovery: performance and robustness. IEEE/ACM Trans Comput Biol Bioinf 17(1):250–263

    Google Scholar 

  11. Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27(2):83–85

    Google Scholar 

  12. Haury A-C, Gestraud P, Vert J-P (2011) The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PloS One 6(12):e28210

    Article  CAS  Google Scholar 

  13. Ho TK (2002) A data complexity analysis of comparative advantages of decision forest constructors. Pattern Anal Appl 5(2):102–112

    Article  Google Scholar 

  14. Hua J, Tembe WD, Dougherty ER (2009) Performance of feature-selection methods in the classification of high-dimension data. Pattern Recognit 42(3):409–424

    Article  Google Scholar 

  15. Huber MF, Bailey T, Durrant-Whyte H, Hanebeck UD (2008) On entropy approximation for Gaussian mixture random vectors. In: Proceedings of the 2008 IEEE international conference on multisensor fusion and integration for intelligent systems, pp 181–188

    Google Scholar 

  16. Kleinbaum DG, Klein M (2010) Survival analysis, 3rd edn. Springer, New York

    Google Scholar 

  17. Krämer A, Green J, Pollard J Jr, Tugendreich S (2013) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530

    Article  Google Scholar 

  18. Li T, Zhang C, Ogihara M (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15):2429–2437

    Article  CAS  Google Scholar 

  19. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf 7(1):S7

    Article  Google Scholar 

  20. McCullagh and John A. Nelder (1989) Generalized Linear Models, Second Edition, Volume 37 of Chapman & Hall/CRC Monographs on Statistics & Applied Probability, London, UK

    Google Scholar 

  21. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  CAS  Google Scholar 

  22. Shedden K, Taylor JMG, Enkemann SA, Tsao M-S, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, Motoi N, Travis W, Conley B, Seshan VE, Meyerson M, Kuick R, Dobbin KK, Lively T, Jacobson JW, Beer DG (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14(8):822–827

    Article  CAS  Google Scholar 

  23. Sima C, Dougherty ER (2006) What should be expected from feature selection in small-sample settings. Bioinformatics 22(19):2430–2436

    Article  CAS  Google Scholar 

  24. Sima C, Dougherty ER (2008) The peaking phenomenon in the presence of feature-selection. Pattern Recognit Lett 29(11):1667–1674

    Article  Google Scholar 

  25. Simard R, L’Ecuyer P, et al (2011) Computing the two-sided Kolmogorov-Smirnov distribution. J Stat Softw 39(11):1–18

    Article  Google Scholar 

  26. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic, Boston

    Google Scholar 

  27. Wehenkel L, Geurts P, Huynh-Thu VA, Saeys Y (2012) Statistical interpretation of machine learning-based feature importance scores for biomarker discovery. Bioinformatics 28(13):1766–1774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Pietrzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foroughi Pour, A., Loveless, I., Rempala, G., Pietrzak, M. (2021). Binary Classification for Failure Risk Assessment. In: Markowitz, J. (eds) Translational Bioinformatics for Therapeutic Development. Methods in Molecular Biology, vol 2194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0849-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0849-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0848-7

  • Online ISBN: 978-1-0716-0849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics