Skip to main content

Development and Optimization of Clinical Informatics Infrastructure to Support Bioinformatics at an Oncology Center

Part of the Methods in Molecular Biology book series (MIMB,volume 2194)

Abstract

Translational bioinformatics for therapeutic discovery requires the infrastructure of clinical informatics. In this chapter, we describe the clinical informatics components needed for successful implementation of translational research at a cancer center. This chapter is meant to be an introduction to those clinical informatics concepts that are needed for translational research. For a detailed account of clinical informatics, the authors will guide the reader to comprehensive resources. We provide examples of workflows from Moffitt Cancer Center led by Drs. Perkins and Markowitz. This perspective represents an interesting collaboration as Dr. Perkins is the Chief Medical Information Officer and Dr. Markowitz is a translational researcher in Melanoma with an active informatics component to his laboratory to study the mechanisms of resistance to checkpoint blockade and an active member of the clinical informatics team.

Key words

  • Clinical informatics
  • Bioinformatics
  • Translational research
  • Oncology operational processes

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0849-4_1
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0849-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 10 November 2020

    The book has been inadvertently published with wrong affiliation for the corresponding author, Randa M. Perkins, of chapter 1. It has now been updated as below in this revised version of the book.

References

  1. Detmer DE, Lumpkin JR, Williamson JJ (2009) Defining the medical subspecialty of clinical informatics. J Am Med Inform Assoc 16(2):167–168

    PubMed  PubMed Central  Google Scholar 

  2. Medicine ABoP (2017) Clinical informatics 2017 examination blueprint. Core content of the clinical informatics subspecialty. https://www.theabpm.org/wp-content/uploads/2017/09/2017CI-Content-Outline.pdf. Accessed 09 Jan 2019

  3. Gardner RM, Overhage JM, Steen EB et al (2009) Core content for the subspecialty of clinical informatics. J Am Med Inform Assoc 16(2):153–157

    PubMed  PubMed Central  Google Scholar 

  4. Detmer DE, Shortliffe EH (2014) Clinical informatics: prospects for a new medical subspecialty. JAMA 311(20):2067–2068

    CAS  PubMed  Google Scholar 

  5. Greenes RA, Shortliffe EH (1990) Medical informatics. An emerging academic discipline and institutional priority. JAMA 263(8):1114–1120

    CAS  PubMed  Google Scholar 

  6. Bernstam EV, Smith JW, Johnson TR (2010) What is biomedical informatics? J Biomed Inform 43(1):104–110

    PubMed  Google Scholar 

  7. Sarkar IN, Butte AJ, Lussier YA, Tarczy-Hornoch P, Ohno-Machado L (2011) Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc 18(4):354–357

    PubMed  PubMed Central  Google Scholar 

  8. Kulikowski CA, Shortliffe EH, Currie LM et al (2012) AMIA board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. J Am Med Inform Assoc 19(6):931–938

    PubMed  PubMed Central  Google Scholar 

  9. Friedman CP (2009) A “fundamental theorem” of biomedical informatics. J Am Med Inform Assoc 16(2):169–170

    PubMed  PubMed Central  Google Scholar 

  10. Weed LL (1971) The problem oriented record as a basic tool in medical education, patient care and clinical research. Ann Clin Res 3(3):131–134

    CAS  PubMed  Google Scholar 

  11. Henry J, Pylypchuk Y, Searcy T, Patel V (2016) Adoption of electronic health record systems among U.S. Non-Federal Acute Care Hospitals: 2008-2015. ONC Data Brief 35

    Google Scholar 

  12. Evans RS (2016) Electronic health records: then, now, and in the future. Yearb Med Inform (Suppl 1):S48–S61

    Google Scholar 

  13. Institute of Medicine (2003) Key capabilities of an electronic health record system: letter report. The National Academies Press, Washington, DC. https://doi.org/10.17226/10781

    CrossRef  Google Scholar 

  14. Schreiweis B, Trinczek B, Kopcke F et al (2014) Comparison of electronic health record system functionalities to support the patient recruitment process in clinical trials. Int J Med Inform 83(11):860–868

    PubMed  Google Scholar 

  15. Bruland P, McGilchrist M, Zapletal E et al (2016) Common data elements for secondary use of electronic health record data for clinical trial execution and serious adverse event reporting. BMC Med Res Methodol 16(1):159

    PubMed  PubMed Central  Google Scholar 

  16. The Innovative Medicines Initiative (2016) Electronic health records for clinical research (2011–2016). http://www.ehr4cr.eu/. Accessed 09 Jan 2019

  17. Daniel C, Kalra D, Section Editors for the IYSoCRI (2018) Clinical research informatics: contributions from 2017. Yearb Med Inform 27(1):177–183

    PubMed  PubMed Central  Google Scholar 

  18. CMS (2019) Certified EHR technology. https://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Certification.html. Accessed 09 Jan 2019

  19. Waegemann CP (2003) Ehr vs. cpr vs. emr. Healthc Inform Online 1:1–4

    Google Scholar 

  20. Hillestad R, Bigelow J, Bower A et al (2005) Can electronic medical record systems transform health care? Potential health benefits, savings, and costs. Health Aff (Millwood) 24(5):1103–1117

    Google Scholar 

  21. Stair TO (1998) Reduction of redundant laboratory orders by access to computerized patient records. J Emerg Med 16(6):895–897

    CAS  PubMed  Google Scholar 

  22. Wilson GA, McDonald CJ, McCabe GP Jr (1982) The effect of immediate access to a computerized medical record on physician test ordering: a controlled clinical trial in the emergency room. Am J Public Health 72(7):698–702

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Wang Y, Magrabi F (2017) Downtime in digital hospitals: an analysis of patterns and causes over 33 months. Stud Health Technol Inform 239:14–20

    PubMed  Google Scholar 

  24. Harrison AM, Siwani R, Pickering BW, Herasevich V (2019) Clinical impact of intraoperative electronic health record downtime on surgical patients. J Am Med Inform Assoc 26(10):928–933

    PubMed  PubMed Central  Google Scholar 

  25. Caesar MC, McIntaggart S (2015) IT downtime - a cultural shift. Healthc Q 18(1):43–47

    PubMed  Google Scholar 

  26. Becker M, Goldszal A, Detal J, Gronlund-Jacob J, Epstein R (2015) Managing a multisite academic-private radiology practice Reading environment: impact of IT downtimes on Enterprise efficiency. J Am Coll Radiol 12(6):630–637

    PubMed  Google Scholar 

  27. Khatri N (2006) Building IT capability in health-care organizations. Health Serv Manag Res 19(2):73–79

    Google Scholar 

  28. Khatri N, Gupta V (2016) Effective implementation of health information technologies in U.S. hospitals. Health Care Manag Rev 41(1):11–21

    Google Scholar 

  29. Viceconti M (2015) Biomechanics-based in silico medicine: the manifesto of a new science. J Biomech 48(2):193–194

    PubMed  Google Scholar 

  30. Besiso A, Patrick JD, Dip G, Ho V, Cheng Y (2018) The impact of an enterprise electronic medical record (EEMR) model vs a clinical information system (CIS) model on usability, efficiency, and adaptability. AMIA Annu Symp Proc 2018:242–251

    PubMed  PubMed Central  Google Scholar 

  31. Ratwani RM, Hettinger AZ, Fairbanks RJ (2017) Barriers to comparing the usability of electronic health records. J Am Med Inform Assoc 24(e1):e191–e193

    PubMed  Google Scholar 

  32. Tan BW, Lo TW (1991) The impact of interface customization on the effect of cognitive style on information system success. Behav Inform Technol 10(4):297–310

    Google Scholar 

  33. Moon MC, Hills R, Demiris G (2018) Understanding optimization processes of electronic health records (EHR) in select leading hospitals: a qualitative study. J Innov Health Inform 25(2):109–125

    PubMed  Google Scholar 

  34. Ratwani RM, Savage E, Will A et al (2018) A usability and safety analysis of electronic health records: a multi-center study. J Am Med Inform Assoc 25(9):1197–1201

    PubMed  PubMed Central  Google Scholar 

  35. Calvitti A, Farber N, Chen Y et al (2012) Temporal analysis of physicians' EHR workflow during outpatient visits. Paper presented at: 2012 IEEE second international conference on healthcare informatics, imaging and systems biology, 27–28 Sept 2012

    Google Scholar 

  36. Estes S, Helleberg J, Long K et al (2018) Principles for minimizing cognitive assistance distraction in the cockpit. Paper presented at: 2018 IEEE/AIAA 37th digital avionics systems conference (DASC); 23–27 Sept 2018

    Google Scholar 

  37. Street RL Jr, Liu L, Farber NJ et al (2014) Provider interaction with the electronic health record: the effects on patient-centered communication in medical encounters. Patient Educ Couns 96(3):315–319

    PubMed  PubMed Central  Google Scholar 

  38. Gardner RL, Cooper E, Haskell J et al (2019) Physician stress and burnout: the impact of health information technology. J Am Med Inform Assoc 26(2):106–114

    PubMed  Google Scholar 

  39. Meyerhoefer CD, Sherer SA, Deily ME et al (2018) Provider and patient satisfaction with the integration of ambulatory and hospital EHR systems. J Am Med Inform Assoc 25(8):1054–1063

    PubMed  PubMed Central  Google Scholar 

  40. Melnick ER, Dyrbye LN, Sinsky CA et al (2020) The association between perceived electronic health record usability and professional burnout among US physicians. Mayo Clin Proc 95(3):476–487

    PubMed  Google Scholar 

  41. Imai M (2012) Gemba Kaizen: a commonsense approach to a continuous improvement strategy, 2nd edn. McGraw Hill, New York

    Google Scholar 

  42. Christopher AS, Smith CS, Tivis R, Wilper AP (2014) Trends in United States physician work hours and career satisfaction. Am J Med 127(7):674–680

    PubMed  Google Scholar 

  43. Zolhavarieh S, Parry D, Bai Q (2017) Issues associated with the use of semantic web technology in knowledge acquisition for clinical decision support systems: systematic review of the literature. JMIR Med Inform 5(3):e18

    PubMed  PubMed Central  Google Scholar 

  44. Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41(5):687–693

    PubMed  Google Scholar 

  45. Gordon CL, Weng C (2015) Combining expert knowledge and knowledge automatically acquired from electronic data sources for continued ontology evaluation and improvement. J Biomed Inform 57:42–52

    PubMed  PubMed Central  Google Scholar 

  46. Payne T (2014) Practical guide to clinical computing systems. Elsevier, Boston, MA

    Google Scholar 

  47. Myrick K, Ogburn D, Ward B (2017) Percentage of office-based physicians using any electronic health record (EHR)/electronic medical record (EMR) system and physicians that have a certified EHR/EMR system, by U.S. state: National Electronic Health Records Survey, 2017. https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_State.pdf. Accessed 09 Jan 2019

  48. Sittig DF, Ash J (2011) Clinical information systems: overcoming adverse consequences. Jones and Bartlett, Sudbury, MA

    Google Scholar 

  49. Yuan CT, Bradley EH, Nembhard IM (2015) A mixed methods study of how clinician 'super users' influence others during the implementation of electronic health records. BMC Med Inform Decis Mak 15:26–26

    PubMed  PubMed Central  Google Scholar 

  50. Bodenreider O, Cornet R, Vreeman DJ (2018) Recent developments in clinical terminologies - SNOMED CT, LOINC, and RxNorm. Yearb Med Inform 27(1):129–139

    PubMed  PubMed Central  Google Scholar 

  51. Buscemi N, Hartling L, Vandermeer B, Tjosvold L, Klassen TP (2006) Single data extraction generated more errors than double data extraction in systematic reviews. J Clin Epidemiol 59(7):697–703

    PubMed  Google Scholar 

  52. Gotzsche PC, Hrobjartsson A, Maric K, Tendal B (2007) Data extraction errors in meta-analyses that use standardized mean differences. JAMA 298(4):430–437

    PubMed  Google Scholar 

  53. Jones AP, Remmington T, Williamson PR, Ashby D, Smyth RL (2005) High prevalence but low impact of data extraction and reporting errors were found in Cochrane systematic reviews. J Clin Epidemiol 58(7):741–742

    PubMed  Google Scholar 

  54. Statutes FS (2018) 456.42 Written prescriptions for medicinal drugs. http://www.leg.state.fl.us/Statutes/index.cfm?App_mode=Display_Statute&Search_String=&URL=0400-0499/0456/Sections/0456.42.html. Accessed 3 Dec 2019

  55. Thompson WT, Cupples ME, Sibbett CH, Skan DI, Bradley T (2001) Challenge of culture, conscience, and contract to general practitioners' care of their own health: qualitative study. BMJ 323(7315):728–731

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Talty PM (1985) Time management in clinical practice. Occup Ther Health Care 2(4):95–104

    CAS  PubMed  Google Scholar 

  57. Spears BW (1981) A time management system for preventing physician impairment. J Fam Pract 13(1):75–80

    CAS  PubMed  Google Scholar 

  58. Sackett DL (2011) Clinician-trialist rounds: 2. Time-management of your clinical practice and teaching. Clin Trials 8(1):112–114

    PubMed  Google Scholar 

  59. Smeltzer CH, Hines PA, Beebe H, Keller B (1996) Streamlining documentation: an opportunity to reduce costs and increase nurse clinicians’ time with patients. J Nurs Care Qual 10(4):66–77

    CAS  PubMed  Google Scholar 

  60. Jamieson T, Ailon J, Chien V, Mourad O (2017) An electronic documentation system improves the quality of admission notes: a randomized trial. J Am Med Inform Assoc 24(1):123–129

    PubMed  Google Scholar 

  61. Jefferies D, Johnson M, Griffiths R (2010) A meta-study of the essentials of quality nursing documentation. Int J Nurs Pract 16(2):112–124

    PubMed  Google Scholar 

  62. Fanucchi L, Yan D, Conigliaro RL (2016) Duly noted: lessons from a two-site intervention to assess and improve the quality of clinical documentation in the electronic health record. Appl Clin Inform 7(3):653–659

    PubMed  PubMed Central  Google Scholar 

  63. Neri PM, Volk LA, Samaha S et al (2014) Relationship between documentation method and quality of chronic disease visit notes. Appl Clin Inform 5(2):480–490

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Burke HB, Hoang A, Becher D et al (2014) QNOTE: an instrument for measuring the quality of EHR clinical notes. J Am Med Inform Assoc 21(5):910–916

    PubMed  PubMed Central  Google Scholar 

  65. Slaughter SE, Hill JN, Snelgrove-Clarke E (2015) What is the extent and quality of documentation and reporting of fidelity to implementation strategies: a scoping review. Implement Sci 10:129

    PubMed  PubMed Central  Google Scholar 

  66. Brubaker DK, Proctor EA, Haigis KM, Lauffenburger DA (2019) Computational translation of genomic responses from experimental model systems to humans. PLoS Comput Biol 15(1):e1006286

    PubMed  PubMed Central  Google Scholar 

  67. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A (2019) Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16(11):703–715

    PubMed  PubMed Central  Google Scholar 

  68. Kreimeyer K, Foster M, Pandey A et al (2017) Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inform 73:14–29

    PubMed  PubMed Central  Google Scholar 

  69. Yim WW, Yetisgen M, Harris WP, Kwan SW (2016) Natural language processing in oncology: a review. JAMA Oncol 2(6):797–804

    PubMed  Google Scholar 

  70. Hirschberg J, Manning CD (2015) Advances in natural language processing. Science (New York, N.Y.) 349(6245):261–266

    CAS  Google Scholar 

  71. Allen B Jr, Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189

    PubMed  Google Scholar 

  72. Knosp BM, Barnett WK, Anderson NR, Embi PJ (2018) Research IT maturity models for academic health centers: early development and initial evaluation. J Clin Transl Sci 2(5):289–294

    PubMed  Google Scholar 

  73. Moraros J, Lemstra M, Nwankwo C (2016) Lean interventions in healthcare: do they actually work? A systematic literature review. Int J Qual Health Care 28(2):150–165

    PubMed  PubMed Central  Google Scholar 

  74. Barnas K (2011) ThedaCare’s business performance system: sustaining continuous daily improvement through hospital management in a lean environment. Jt Comm J Qual Patient Saf 37(9):387–399

    PubMed  Google Scholar 

  75. Lot LT, Sarantopoulos A, Min LL, Perales SR, Boin I, Ataide EC (2018) Using lean tools to reduce patient waiting time. Leadersh Health Serv (Bradf Engl) 31(3):343–351

    Google Scholar 

  76. Bourgault AM, Upvall MJ, Graham A (2018) Using Gemba boards to facilitate evidence-based practice in critical care. Crit Care Nurse 38(3):e1–e7

    PubMed  Google Scholar 

  77. Hersh WR, Boone KW, Totten AM (2018) Characteristics of the healthcare information technology workforce in the HITECH era: underestimated in size, still growing, and adapting to advanced uses. JAMIA Open 1(2):188–194

    PubMed  PubMed Central  Google Scholar 

  78. Southard PB, Chandra C, Kumar S (2012) RFID in healthcare: a six sigma DMAIC and simulation case study. Int J Health Care Qual Assur 25(4):291–321

    PubMed  Google Scholar 

  79. Poon EG, Blumenthal D, Jaggi T, Honour MM, Bates DW, Kaushal R (2004) Overcoming barriers to adopting and implementing computerized physician order entry systems in U.S. hospitals. Health Aff 23(4):184–190

    Google Scholar 

  80. Cohen MR (2015) The challenge of EHR acceptance by physicians. J Med Pract Manag 31(2):117–120

    Google Scholar 

  81. Stanford University, Harris Poll (2018) How doctors feel about electronic health records: national physician poll by the Harris Poll. http://med.stanford.edu/content/dam/sm/ehr/documents/EHR-Poll-Presentation.pdf. Accessed 1 Sept 2019

  82. Jansen P, van den Berg L, van Overveld P, Boiten JW (2019) Research data stewardship for healthcare professionals. In: Kubben P, Dumontier M, Dekker A (eds) Fundamentals of clinical data science. Springer, Cham (CH), pp 37–53

    Google Scholar 

  83. National Academies of Sciences, Engineering, and Medicine (2017) Real-world evidence generation and evaluation of therapeutics: proceedings of a workshop 2017. https://doi.org/10.17226/24685. Accessed 19 Dec 2019

  84. McGreevey JD 3rd. (2013) Order sets in electronic health records: principles of good practice. Chest 143(1):228–235

    PubMed  Google Scholar 

  85. Fenstermacher DA, Wenham RM, Rollison DE, Dalton WS (2011) Implementing personalized medicine in a cancer center. Cancer J 17(6):528–536

    PubMed  PubMed Central  Google Scholar 

  86. Li B, Eschrich SA, Berglund A et al (2017) Use of the total cancer care system to enrich screening for CD30-positive solid tumors for patient enrollment into a Brentuximab Vedotin clinical trial: a pilot study to evaluate feasibility. JMIR Res Protoc 6(3):e45

    PubMed  PubMed Central  Google Scholar 

  87. Wenham RM, Sullivan DM, Hulse M, Jacobsen PB, Dalton WS (2012) The creation of an integrated health-information platform: building the framework to support personalized medicine. Pers Med 9(6):621–632

    CAS  Google Scholar 

  88. Carvajal R, Gonzalez-Calderon G, Betin-Montes M et al (2019) Patient timelines for research-oriented exploration of longitudinal cancer patient data: PT explorer. Paper presented at: American Medical Informatics Association annual symposium 2019, Washington, D.C.

    Google Scholar 

  89. Konrad R, Tulu B, Lawley M (2013) Monitoring adherence to evidence-based practices: a method to utilize HL7 messages from hospital information systems. Appl Clin Inform 4(1):126–143

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bockmann B, Heiden K (2013) Extracting and transforming clinical guidelines into pathway models for different hospital information systems. Health Inf Sci Syst 1:13

    PubMed  PubMed Central  Google Scholar 

  91. Boxwala AA, Peleg M, Tu S et al (2004) GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform 37(3):147–161

    PubMed  Google Scholar 

  92. Peleg M, Boxwala AA, Bernstam E, Tu S, Greenes RA, Shortliffe EH (2001) Sharable representation of clinical guidelines in GLIF: relationship to the Arden syntax. J Biomed Inform 34(3):170–181

    CAS  PubMed  Google Scholar 

  93. Peleg M, Boxwala AA, Ogunyemi O et al (2000) GLIF3: the evolution of a guideline representation format. Proc AMIA Symp:645–649

    Google Scholar 

  94. Peleg M, Ogunyemi O, Tu S et al (2001) Using features of Arden syntax with object-oriented medical data models for guideline modeling. Proc AMIA Symp:523–527

    Google Scholar 

  95. Peleg M, Patel VL, Snow V et al (2002) Support for guideline development through error classification and constraint checking. Proc AMIA Symp:607–611

    Google Scholar 

  96. Wang D, Peleg M, Tu SW et al (2004) Design and implementation of the GLIF3 guideline execution engine. J Biomed Inform 37(5):305–318

    PubMed  Google Scholar 

  97. Wang D, Shortliffe EH (2002) GLEE—a model-driven execution system for computer-based implementation of clinical practice guidelines. Proc AMIA Symp:855–859

    Google Scholar 

  98. Peleg M, Boxwala AA, Tu S, Greenes RA, Shortliffe EH, Patel VL (2001) Handling expressiveness and comprehensibility requirements in GLIF3. Stud Health Technol Inform 84(Pt 1):241–245

    CAS  PubMed  Google Scholar 

  99. Lane CD, Walton JD, Shortliffe EH (1986) Graphical access to medical expert systems: II. Design of an interface for physicians. Methods Inf Med 25(3):143–150

    CAS  PubMed  Google Scholar 

  100. Tsuji S, Shortliffe EH (1986) Graphical access to medical expert systems: I. design of a knowledge engineer’s interface. Methods Inf Med 25(2):62–70

    CAS  PubMed  Google Scholar 

  101. Shortliffe EH (1986) Medical expert systems—knowledge tools for physicians. West J Med 145(6):830–839

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Braunstein ML (2019) Health care in the age of interoperability part 6: the future of FHIR. IEEE Pulse 10(4):25–27

    PubMed  Google Scholar 

  103. H. Lee Moffitt Cancer Center and Research Institute (2019) Moffitt mission statement. https://moffitt.org/about-moffitt/. Accessed 3 Dec 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Randa M. Perkins or Joseph Markowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Perkins, R.M., Markowitz, J. (2021). Development and Optimization of Clinical Informatics Infrastructure to Support Bioinformatics at an Oncology Center. In: Markowitz, J. (eds) Translational Bioinformatics for Therapeutic Development. Methods in Molecular Biology, vol 2194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0849-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0849-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0848-7

  • Online ISBN: 978-1-0716-0849-4

  • eBook Packages: Springer Protocols