Skip to main content

Introduction to Multiparametric Flow Cytometry and Analysis of High-Dimensional Data

Part of the Methods in Molecular Biology book series (MIMB,volume 2194)

Abstract

Multiparametric flow cytometry is a technique utilized in translational experiments that utilizes fluorescently tagged antibodies and functional fluorescent dyes to measure proteins on the surface or in the cytoplasm of cells and to measure processes occurring within cells themselves. These fluorescent molecules, or fluorophores, can be tagged to antibodies to measure specific biological molecules such as proteins inside or on the surface of cells. Small organic compounds such as the nucleic acid binding dye propidium iodide (PI) can permeate compromised cell membranes when cells are no longer viable or used to measure DNA content of cycling cells. Successful completion of flow cytometry experiments requires expertise in both the preparation of the samples, acquisition of the samples on instruments, and analyses of the results. This chapter describes the principles needed to conduct a successful multiparameter flow cytometry experiment needed for drug development with references to well established internet resources that are useful to those less experienced in the field. In addition, we provide a brief introduction to data analysis including complex analysis of 10+ parameters simultaneously. These high-dimensional datasets require novel methods for analysis due to the volume of data collected, which are also introduced in this chapter.

Key words

  • Flow cytometry
  • Phenotyping
  • Informatics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0849-4_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0849-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. O’Day SJ, Hamid O, Urba WJ (2007) Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110(12):2614–2627

    PubMed  CrossRef  CAS  Google Scholar 

  2. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    CAS  PubMed  CrossRef  Google Scholar 

  4. Liu C, Peng W, Xu C et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403

    CAS  PubMed  CrossRef  Google Scholar 

  5. Pelster MS, Amaria RN (2019) Combined targeted therapy and immunotherapy in melanoma: a review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther Adv Med Oncol 11:1758835919830826

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Angelo M, Bendall SC, Finck R et al (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20(4):436–442

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Giesen C, Wang HA, Schapiro D et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11(4):417–422

    CAS  CrossRef  PubMed  Google Scholar 

  8. Coltharp C, Zheng Y, Schaefer R et al (2018) Advances in multiplex fluorescence immunohistochemistry: 9 color imaging; whole slide multispectral. J Immunother Cancer 6(Suppl 1):P433

    Google Scholar 

  9. Goltsev Y, Samusik N, Kennedy-Darling J et al (2018) Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174(4):968–981.e915

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Gorris MAJ, Halilovic A, Rabold K et al (2018) Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol 200(1):347–354

    CAS  PubMed  CrossRef  Google Scholar 

  11. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176

    CAS  PubMed  CrossRef  Google Scholar 

  12. Pockley AG, Foulds GA, Oughton JA, Kerkvliet NI, Multhoff G (2015) Immune cell phenotyping using flow cytometry. Curr Protoc Toxicol 66:18.18.11–18.18.34

    CrossRef  Google Scholar 

  13. Virgo PF, Gibbs GJ (2012) Flow cytometry in clinical pathology. Ann Clin Biochem 49(Pt 1):17–28

    CAS  PubMed  CrossRef  Google Scholar 

  14. Leavesley SJ, Britain AL, Cichon LK, Nikolaev VO, Rich TC (2013) Assessing FRET using spectral techniques. Cytometry A 83(10):898–912

    PubMed  PubMed Central  Google Scholar 

  15. Bushnell T (2017) Why understanding fluorochromes is important in flow cytometry. https://expertcytometry.com/why-understanding-fluorochromes-is-important-in-flow-cytometry/. Accessed 26 Aug 2019

  16. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom. Chapter 1:Unit 1.14

    Google Scholar 

  17. De Rosa SC, Roederer M (2001) Eleven-color flow cytometry. A powerful tool for elucidation of the complex immune system. Clin Lab Med 21(4):697–712, vii

    PubMed  Google Scholar 

  18. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    CAS  CrossRef  PubMed  Google Scholar 

  19. Baumgarth N, Roederer M (2000) A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods 243(1–2):77–97

    CAS  CrossRef  PubMed  Google Scholar 

  20. Hahne F, LeMeur N, Brinkman RR et al (2009) flowCore: a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  21. Cossarizza A, Chang HD, Radbruch A et al (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797

    CAS  PubMed  CrossRef  Google Scholar 

  22. Johnson S, Nguyen V, Coder D (2013) Assessment of cell viability. Curr Protoc Cytom. Chapter 9:Unit 9.2

    Google Scholar 

  23. McCracken J (2015) 3 Reagents for identifying live, dead, and apoptotic cells by flow cytometry. https://expertcytometry.com/3-reagents-for-identifying-live-dead-and-apoptotic-cells-by-flow-cytometry/. Accessed 26 Aug 2019

  24. Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2010) Amine-reactive dyes for dead cell discrimination in fixed samples. Curr Protoc Cytom. Chapter 9:Unit 9.34

    Google Scholar 

  25. Bauer KD (1993) Quality control issues in DNA content flow cytometry. Ann N Y Acad Sci 677:59–77

    CAS  PubMed  CrossRef  Google Scholar 

  26. Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA, Gabrielson E (2001) Doublet discrimination in DNA cell-cycle analysis. Cytometry 46(5):296–306

    CAS  PubMed  CrossRef  Google Scholar 

  27. Wang L, Hoffman RA (2017) Standardization, calibration, and control in flow cytometry. Curr Protoc Cytom 79:1.3.1–1.3.27

    Google Scholar 

  28. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69(9):1037–1042

    PubMed  CrossRef  Google Scholar 

  29. Bushnell T (2017) Strengths and weaknesses of isotype controls in flow cytometry. https://expertcytometry.com/strengths-and-weaknesses-of-isotype-controls-in-flow-cytometry/. Accessed 26 Aug 2019

  30. McCracken J (2015) When to use (and not use) flow cytometry isotype controls. https://expertcytometry.com/when-to-use-and-not-use-flow-cytometry-isotype-controls/. Accessed 26 Aug 2019

  31. Hulspas R, O’Gorman MR, Wood BL, Gratama JW, Sutherland DR (2009) Considerations for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom 76(6):355–364

    PubMed  CrossRef  CAS  Google Scholar 

  32. Andersen MN, Al-Karradi SN, Kragstrup TW, Hokland M (2016) Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages. Cytometry A 89(11):1001–1009

    CAS  PubMed  CrossRef  Google Scholar 

  33. Reichard A, Asosingh K (2019) Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A 95(2):219–226

    CAS  PubMed  CrossRef  Google Scholar 

  34. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685

    CAS  PubMed  CrossRef  Google Scholar 

  35. Novo D, Wood J (2008) Flow cytometry histograms: transformations, resolution, and display. Cytometry A 73(8):685–692

    PubMed  CrossRef  Google Scholar 

  36. Parks DR, Roederer M, Moore WA (2006) A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69(6):541–551

    CrossRef  PubMed  Google Scholar 

  37. Lugli E, Roederer M, Cossarizza A (2010) Data analysis in flow cytometry: the future just started. Cytometry A 77(7):705–713

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  38. Nomura L, Maino VC, Maecker HT (2008) Standardization and optimization of multiparameter intracellular cytokine staining. Cytometry A 73(11):984–991

    CrossRef  PubMed  Google Scholar 

  39. Pachon G, Caragol I, Petriz J (2012) Subjectivity and flow cytometric variability. Nat Rev Immunol 12(5):396; author reply 396

    CrossRef  CAS  PubMed  Google Scholar 

  40. Gouttefangeas C, Chan C, Attig S et al (2015) Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunol Immunother 64(5):585–598

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Palit S, Theis FJ, Zielinski CE (2018) Meeting the challenges of high-dimensional data analysis in immunology. bioRxiv.473215

    Google Scholar 

  42. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655

    CAS  PubMed  CrossRef  Google Scholar 

  43. Saeys Y, Van Gassen S, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16(7):449–462

    CAS  PubMed  CrossRef  Google Scholar 

  44. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  45. Wattenberg M, Viégas F, Johnson I (2016) How to use t-SNE effectively. Distill

    Google Scholar 

  46. Team AVC (2017) Comprehensive guide on t-SNE algorithm with implementation in R & Python. https://www.analyticsvidhya.com/blog/2017/01/t-sne-implementation-r-python/. Accessed 11 Sept 2019

  47. Pezzotti N, Lelieveldt BPF, Van Der Maaten L, Hollt T, Eisemann E, Vilanova A (2017) Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans Vis Comput Graph 23(7):1739–1752

    PubMed  CrossRef  Google Scholar 

  48. Qiu P, Simonds EF, Bendall SC et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645

    PubMed  CrossRef  Google Scholar 

  50. Garg SK, Ott MJ, Mostofa AGM et al (2019) Multi-dimensional flow cytometry analyses reveal a dichotomous role for nitric oxide in melanoma patients receiving immunotherapy. Front Immunol 11:164

    CrossRef  CAS  Google Scholar 

  51. Shekhar K, Brodin P, Davis MM, Chakraborty AK (2014) Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 111(1):202–207

    CAS  PubMed  CrossRef  Google Scholar 

  52. Höllt T, Pezzotti N, van Unen V et al (2016) Cytosplore: interactive immune cell phenotyping for large single-cell datasets. Comput Graph Forum 35(3):171–180

    CrossRef  Google Scholar 

  53. el Amir AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552

    CAS  PubMed Central  CrossRef  Google Scholar 

  54. Chen TJ, Kotecha N (2014) Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. Curr Top Microbiol Immunol 377:127–157

    CAS  PubMed  Google Scholar 

  55. van Unen V, Hollt T, Pezzotti N et al (2017) Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat Commun 8(1):1740

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  56. Bhattacharya S, Andorf S, Gomes L et al (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol Res 58(2–3):234–239

    CAS  PubMed  CrossRef  Google Scholar 

  57. Bhattacharya S, Dunn P, Thomas CG et al (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci data 5:180015

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Markowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sun, J., Kroeger, J.L., Markowitz, J. (2021). Introduction to Multiparametric Flow Cytometry and Analysis of High-Dimensional Data. In: Markowitz, J. (eds) Translational Bioinformatics for Therapeutic Development. Methods in Molecular Biology, vol 2194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0849-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0849-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0848-7

  • Online ISBN: 978-1-0716-0849-4

  • eBook Packages: Springer Protocols