Skip to main content

Blue-Native Electrophoresis to Study the OXPHOS Complexes

  • Protocol
  • First Online:
Mitochondrial Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2192))

Abstract

Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a technique optimized for the analysis of the five components of the mitochondrial oxidative phosphorylation (OXPHOS) system. BN-PAGE is based on the preservation of the interactions between the individual subunits within the integral complexes. To achieve this, the complexes are extracted from the mitochondrial inner membrane using mild detergents and separated by electrophoresis in the absence of denaturing agents. The electrophoretic procedures can then be combined with a variety of downstream detection techniques. Since its development in the 1990s, BN-PAGE has been applied in the study of mitochondria from all kinds of organisms and extensive amounts of data have been produced using this technique, being key for the understanding of many aspects of OXPHOS physiopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 142.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 197.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  CAS  Google Scholar 

  2. Schagger H (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol 260:190–202

    Article  CAS  Google Scholar 

  3. Schagger H (1996) Electrophoretic techniques for isolation and quantification of oxidative phosphorylation complexes from human tissues. Methods Enzymol 264:555–566

    Article  CAS  Google Scholar 

  4. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428

    Article  CAS  Google Scholar 

  5. Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1(1):11. https://doi.org/10.1186/1746-4811-1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klement P, Nijtmans LG, Van den Bogert C, Houstek J (1995) Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal Biochem 231(1):218–224. https://doi.org/10.1006/abio.1995.1523

    Article  CAS  PubMed  Google Scholar 

  7. Nijtmans LG, Henderson NS, Holt IJ (2002) Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 26(4):327–334

    Article  CAS  Google Scholar 

  8. Calvaruso MA, Smeitink J, Nijtmans L (2008) Electrophoresis techniques to investigate defects in oxidative phosphorylation. Methods 46(4):281–287

    Article  CAS  Google Scholar 

  9. Zerbetto E, Vergani L, Dabbeni-Sala F (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18(11):2059–2064. https://doi.org/10.1002/elps.1150181131

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Silva P, Acin-Perez R, Fernandez-Vizarra E, Perez-Martos A, Enriquez JA (2007) In vivo and in organello analyses of mitochondrial translation. Methods Cell Biol 80:571–588

    Article  CAS  Google Scholar 

  11. McKenzie M, Lazarou M, Ryan MT (2009) Chapter 18. Analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods Enzymol 456:321–339. S0076-6879(08)04418-2

    Article  CAS  Google Scholar 

  12. Fernández-Vizarra E, Ferrín G, Pérez-Martos A, Fernández-Silva P, Zeviani M, Enríquez JA (2010) Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10(3):253–262

    Article  Google Scholar 

  13. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361(3):462–469

    Article  CAS  Google Scholar 

  14. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2007) Analysis of mitochondrial subunit assembly into respiratory chain complexes using blue native polyacrylamide gel electrophoresis. Anal Biochem 364(2):128–137

    Article  CAS  Google Scholar 

  15. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555(1–3):154–159

    Article  CAS  Google Scholar 

  16. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32(4):529–539

    Article  CAS  Google Scholar 

  17. Bratic A, Wredenberg A, Gronke S, Stewart JB, Mourier A, Ruzzenente B, Kukat C, Wibom R, Habermann B, Partridge L, Larsson NG (2011) The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genet 7(10):e1002324. https://doi.org/10.1371/journal.pgen.1002324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eubel H, Jansch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol 133(1):274–286

    Article  CAS  Google Scholar 

  19. Cruciat CM, Hell K, Folsch H, Neupert W, Stuart RA (1999) Bcs1p, an AAA-family member, is a chaperone for the assembly of the cytochrome bc(1) complex. EMBO J 18(19):5226–5233

    Article  CAS  Google Scholar 

  20. Nijtmans LG, Artal Sanz M, Bucko M, Farhoud MH, Feenstra M, Hakkaart GA, Zeviani M, Grivell LA (2001) Shy1p occurs in a high molecular weight complex and is required for efficient assembly of cytochrome c oxidase in yeast. FEBS Lett 498(1):46–51

    Article  CAS  Google Scholar 

  21. Fernandez-Vizarra E, Fernandez-Silva P, Enriquez JA (2006) Isolation of mitochondria from mammalian tissues and cultured cells. In: Celis JE (ed) Cell biology: a laboratory handbook, vol 3. Elsevier-Academic, Amsterdam, pp 69–77

    Chapter  Google Scholar 

  22. Ma YY, Zhang XL, Wu TF, Liu YP, Wang Q, Zhang Y, Song JQ, Wang YJ, Yang YL (2011) Analysis of the mitochondrial complex I–V enzyme activities of peripheral leukocytes in oxidative phosphorylation disorders. J Child Neurol 26(8):974–979. 0883073811399905

    Article  Google Scholar 

  23. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22

    Article  Google Scholar 

  24. Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43(3):259–263. ng.761

    Article  CAS  Google Scholar 

  25. Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA, Giordano C, Fearnley IM, D’Amati G, Viscomi C, Fernandez-Vizarra E, Zeviani M (2017) TTC19 plays a husbandry role on UQCRFS1 turnover in the biogenesis of mitochondrial respiratory complex III. Mol Cell 67(1):96–105.e104. https://doi.org/10.1016/j.molcel.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  26. Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, Nijtmans L, Uziel G, Zeviani M (2000) A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet 9(18):2733–2742

    Article  CAS  Google Scholar 

  27. Vidoni S, Harbour ME, Guerrero-Castillo S, Signes A, Ding S, Fearnley IM, Taylor RW, Tiranti V, Arnold S, Fernandez-Vizarra E, Zeviani M (2017) MR-1S interacts with PET100 and PET117 in module-based assembly of human cytochrome c oxidase. Cell Rep 18(7):1727–1738. https://doi.org/10.1016/j.celrep.2017.01.044

    Article  CAS  PubMed  Google Scholar 

  28. Pitceathly RD, Rahman S, Wedatilake Y, Polke JM, Cirak S, Foley AR, Sailer A, Hurles ME, Stalker J, Hargreaves I, Woodward CE, Sweeney MG, Muntoni F, Houlden H, Consortium UK, Taanman JW, Hanna MG (2013) NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep 3(6):1795–1805. https://doi.org/10.1016/j.celrep.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pitceathly RDS, Taanman JW (2018) NDUFA4 (renamed COXFA4) is a cytochrome-c oxidase subunit. Trends Endocrinol Metab 29(7):452–454. https://doi.org/10.1016/j.tem.2018.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. José L. Capablo (Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain) and Robert D.S. Pitceathly (MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK) for providing pathological human samples. Our research was funded by Core Grant from the MRC (Grant MC_UU_00015/5), ERC Advanced Grant FP7-322424 and NRJ-Institut de France Grant to M.Z.; and by a “Miguel Servet” Grant (CP09/00156) from the Instituto de Salud Carlos III (Ministerio de Economía y Competitividad), “Marie Curie” European Reintegration Grant (PERG04-GA-2008-239372) and Association Française contre les Myopathies Trampoline Grant (AFM 14921) and Research Grant (AFM 16086) to E.F.-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Fernandez-Vizarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernandez-Vizarra, E., Zeviani, M. (2021). Blue-Native Electrophoresis to Study the OXPHOS Complexes. In: Minczuk, M., Rorbach, J. (eds) Mitochondrial Gene Expression. Methods in Molecular Biology, vol 2192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0834-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0834-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0833-3

  • Online ISBN: 978-1-0716-0834-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics