Skip to main content

Two-Photon Optogenetic Stimulation of Drosophila Neurons

  • Protocol
  • First Online:
Channelrhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2191))

Abstract

Optogenetics enables experimental control over neural activity using light. Channelrhodopsin and its variants are typically activated using visible light excitation but can also be activated using infrared two-photon excitation. Two-photon excitation can improve the spatial precision of stimulation in scattering tissue but has several practical limitations that need to be considered before use. Here we describe the methodology and best practices for using two-photon optogenetic stimulation of neurons within the brain of the fruit fly, Drosophila melanogaster, with an emphasis on projection neurons of the antennal lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  Google Scholar 

  2. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  Google Scholar 

  3. Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106:15025–15030

    Article  CAS  Google Scholar 

  4. Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 107:11981–11986

    Article  CAS  Google Scholar 

  5. Mardinly AR, Oldenburg IA, Pegard NC, Sridharan S, Lyall EH, Chesnov K et al (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21:881–893

    Article  CAS  Google Scholar 

  6. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  Google Scholar 

  7. Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C, Emiliani V (2016) Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7:11928

    Article  CAS  Google Scholar 

  8. Zhang Z, Russell LE, Packer AM, Gauld OM, Hausser M (2018) Closed-loop all-optical interrogation of neural circuits in vivo. Nat Methods 15:1037–1040

    Article  CAS  Google Scholar 

  9. Kazama H (2015) Systems neuroscience in Drosophila: conceptual and technical advantages. Neuroscience 296:3–14

    Article  CAS  Google Scholar 

  10. Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V et al (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765

    Article  CAS  Google Scholar 

  11. Gouwens NW, Wilson RI (2009) Signal propagation in Drosophila central neurons. J Neurosci 29:6239–6249

    Article  CAS  Google Scholar 

  12. Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  CAS  Google Scholar 

  13. Jeanne JM, Fisek M, Wilson RI (2018) The organization of projections from olfactory glomeruli onto higher-order neurons. Neuron 98:1198–1213

    Article  CAS  Google Scholar 

  14. Inada K, Tsuchimoto Y, Kazama H (2017) Origins of cell-type-specific olfactory processing in the drosophila mushroom body circuit. Neuron 95:357–367.e354

    Article  CAS  Google Scholar 

  15. Kim SS, Rouault H, Druckmann S, Jayaraman V (2017) Ring attractor dynamics in the Drosophila central brain. Science 356:849–853

    Article  CAS  Google Scholar 

  16. Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H et al (2017) Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila. Neuron 96:1373–1387.e1376

    Article  CAS  Google Scholar 

  17. Hsiao PY, Tsai CL, Chen MC, Lin YY, Yang SD, Chiang AS (2015) Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin. Biomed Opt Express 6:4344–4352

    Article  CAS  Google Scholar 

  18. Murthy M, Turner G (2013) Whole-cell in vivo patch-clamp recordings in the Drosophila brain. Cold Spring Harb Protoc 2013:140–148

    PubMed  Google Scholar 

  19. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13

    Article  Google Scholar 

  20. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    Article  CAS  Google Scholar 

  21. Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY et al (2014) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332

    Article  CAS  Google Scholar 

  22. Stocker RF, Heimbeck G, Gendre N, de Belle JS (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456

    Article  CAS  Google Scholar 

  23. Murthy M, Turner G (2013) Dissection of the head cuticle and sheath of living flies for whole-cell patch-clamp recordings in the brain. Cold Spring Harb Protoc 2013:134–139

    PubMed  Google Scholar 

  24. Brady J (1965) A simple technique for making very fine, durable dissecting needles by sharpening tungsten wire electrolytically. Bull World Health Organ 32:143–144

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399

    Article  CAS  Google Scholar 

  26. Chaigneau E, Ronzitti E, Gajowa MA, Soler-Llavina GJ, Tanese D, Brureau AY et al (2016) Two-photon holographic stimulation of ReaChR. Front Cell Neurosci 10:234

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Rachel Wilson in developing and refining this methodology. Kristyn Lizbinski provided critical feedback on the manuscript. This work was supported by NIH grants R01DC008174, F32NS083262, and P30NS072030, Yale University, and the Kavli Institute for Neuroscience at Yale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Jeanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fişek, M., Jeanne, J.M. (2021). Two-Photon Optogenetic Stimulation of Drosophila Neurons. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0830-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0829-6

  • Online ISBN: 978-1-0716-0830-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics