Abstract
Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described. An approach for perfusing hearts excised from those animals, recording the ECG to measure heart rate changes, and an illumination technique using a custom micro-LED light source to activate channelrhodopsin is explained. We have used these methods in ongoing studies of the kinetics of autonomic control of cardiac electrophysiology and contractility, demonstrating the proven utility of optogenetic technology to enable unparalleled spatiotemporal anatomic-functional probing of the intrinsic cardiac nervous system.
Key words
- Autonomic nerves
- Cardiac function
- Electrophysiology
- Transgenic mice
- Optogenetics
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386
Funken M, Malan D, Sasse P, Bruegmann T (2019) Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Front Physiol 10:498
Williams JC, Entcheva E (2015) Optogenetic versus electrical stimulation of human cardiomyocytes: modeling insights. Biophys J 108:1934–1945
Scardigli M, Müllenbroich C, Margoni E, Cannazzaro S, Crocini C, Ferrantini C, Coppini R, Yan P, Loew LM, Campione M, Bocchi L, Giulietti D, Cerbai E, Poggesi C, Bub G, Pavone FS, Sacconi L (2018) Real-time optical manipulation of cardiac conduction in intact hearts. J Physiol 596:3841–3858
Godwin WC, Hoffmann GF, Gray TJ, Hughes RM (2019) Imaging of morphological and biochemical hallmarks of apoptosis with optimized optogenetic tools. J Biol Chem. 294(45):16918–16929. https://doi.org/10.1074/jbc.RA119.009141
Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang H-Z, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753–760
Burton RAB, Klimas A, Ambrosi CM, Tomek J, Corbett A, Entcheva E, Bub G (2015) Optical control of excitation waves in cardiac tissue. Nat Photonics 9:813–816
Jameson H, Bateman R, Byrne P, Dyavanapalli J, Wang X, Jain V, Mendelowitz D (2016) Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. Am J Physiol Heart Circ Physiol 310:H1549–H1557
Wengrowski AM, Wang X, Tapa S, Posnack NG, Mendelowitz D, Kay MW (2015) Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc Res 105:143–150
Prando V, Da Broi F, Franzoso M, Plazzo AP, Pianca N, Francolini M, Basso C, Kay MW, Zaglia T, Mongillo M (2018) Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J Physiol 596:2055–2075
Hedrick T, Danskin B, Larsen RS, Ollerenshaw D, Groblewski P, Valley M, Olsen S, Waters J (2016) Characterization of channelrhodopsin and archaerhodopsin in cholinergic neurons of Cre-lox transgenic mice. PLoS One 11:1–15
Nagode DA, Tang AH, Karson MA, Klugmann M, Alger BE (2011) Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus. PLoS One 6:1–9
Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2011) Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452
Moreno A, Endicott K, Skancke M, Dwyer MK, Brennan J, Efimov IR, Trachiotis G, Mendelowitz D, Kay MW (2019) Sudden heart rate reduction upon optogenetic release of acetylcholine from cardiac parasympathetic neurons in perfused hearts. Front Physiol 10:1–11
Zeng H, Madisen L (2012) Mouse transgenic approaches in optogenetics. Prog Brain Res 196:193–213
Piñol RA, Bateman R, Mendelowitz D (2012) Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei. J Neurosci Methods 210:238–246
Ambrosi CM, Sadananda G, Han JL, Entcheva E (2019) Adeno-associated virus mediated gene delivery: implications for scalable in vitro and in vivo cardiac optogenetic models. Front Physiol 10:1–13
Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O’Toole ET, Knöpfel T, Kohl P (2016) Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci 113:14852–14857
Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G, Iwamoto Y, Sun Y, Savol AJ, Sager HB, Lavine KJ, Fishbein GA, Capen DE, Da Silva N, Miquerol L, Wakimoto H, Seidman CE, Seidman JG, Sadreyev RI, Naxerova K, Mitchell RN, Brown D, Libby P, Weissleder R, Swirski FK, Kohl P, Vinegoni C, Milan DJ, Ellinor PT, Nahrendorf M (2017) Macrophages facilitate electrical conduction in the heart. Cell 169:510–522.e20
Wang Y, Lin WK, Crawford W, Ni H, Bolton EL, Khan H, Shanks J, Bub G, Wang X, Paterson DJ, Zhang H, Galione A, Ebert SN, Terrar DA, Lei M (2017) Optogenetic control of heart rhythm by selective stimulation of cardiomyocytes derived from Pnmt+ cells in murine heart. Sci Rep 7:40687
Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, Hiyari S, Gabris-Weber BA, Greenbaum A, Chan KY, Deverman BE, Münzberg H, Ardell JL, Salama G, Gradinaru V, Shivkumar K (2019) Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun 10:1944
Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14:381–392
Zaglia T, Pianca N, Borile G, Da Broi F, Richter C, Campione M, Lehnart SE, Luther S, Corrado D, Miquerol L, Mongillo M (2015) Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of channelrhodopsin-2. Proc Natl Acad Sci U S A 112:E4495–E4504
Wang X, Piñol RA, Byrne P, Mendelowitz D (2014) Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors. J Neurosci 34:6182–6189
Kalmbach A, Hedrick T, Waters J (2012) Selective optogenetic stimulation of cholinergic axons in neocortex. J Neurophysiol 107:2008–2019
Savitt J, Jang S, Mu W, Dawson V, Dawson T (2005) Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci 25:6721–6728
Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, Choi MJ, Lauzon D, Lowell BB, Elmquist JK (2011) Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 13:195–204
Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsáki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 15:793–802
Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50:940–950
Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9:e1003220
Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R (2007) Isolated heart perfusion according to Langendorff - still viable in the new millennium. J Pharmacol Toxicol Methods 55:113–126
Sutherland FJ, Hearse DJ (2000) The isolated blood and perfusion fluid perfused heart. Pharmacol Res 41:613–627
Acknowledgments
The microscopy expertise of Anastas Popratiloff, MD, PhD and the facilities GWU SEH Microscopy Core Facility are gratefully acknowledged. Matthew Stoyek, PhD is gratefully acknowledged for guidance in antibody staining of ChAT. Matthew Colonnese, PhD and Marnie Phillips, PhD are gratefully acknowledged for providing mice used in early experiments. We also thank Emilia Entcheva, PhD for many insightful discussions regarding photoactivation of channelrhodopsin within cardiac tissues.
Funding: This work was supported by grants from the National Institutes of Health (R21-HL132618, R01-HL133862, R01- HL141470), and a Don J. Levy and Elma Levy fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Moreno, A., Kowalik, G., Mendelowitz, D., Kay, M.W. (2021). Optogenetic Control of Cardiac Autonomic Neurons in Transgenic Mice. In: Dempski, R. (eds) Channelrhodopsin. Methods in Molecular Biology, vol 2191. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0830-2_18
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0830-2_18
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0829-6
Online ISBN: 978-1-0716-0830-2
eBook Packages: Springer Protocols