Skip to main content

Single-Cell Transcriptomic Analysis of Hematopoietic Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2185)

Abstract

Single-cell RNA sequencing (scRNA-Seq) allows the complete and unbiased analysis of the transcriptional state of an individual cell. In the past 5 years, scRNA-Seq contributed to the progress of the hematology field, advancing our knowledge of both normal and malignant hematopoiesis. Different scRNA-Seq methods are available, all relying on the conversion of RNA to cDNA, followed by amplification of cDNA in order to obtain a sufficient amount of genetic material for sequencing. Currently available scRNA-Seq platforms can be broadly divided into two categories: droplet-based and plate-based. Each of these approaches has advantages and disadvantages that need to be considered when designing the experiment. Here, we describe detailed protocols of two of the most used methods for scRNA-Seq of hematopoietic cells: Smart-Seq2 (plate-based) and 10× Genomics (droplet-based).

Key words

  • Single-cell biology
  • Single-cell omics
  • Single-cell RNA sequencing
  • Transcriptomics
  • Omics
  • Hematopoiesis
  • Smart-Seq2
  • 10× Genomics
  • Plate-based RNA-Seq
  • Droplet-based RNA-Seq

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0810-4_9
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0810-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A, David E, Cohen N, Lauridsen FK, Haas S, Schlitzer A, Mildner A, Ginhoux F, Jung S, Trumpp A, Porse BT, Tanay A, Amit I (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–1677

    CAS  CrossRef  PubMed  Google Scholar 

  3. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, Ponting CP, Voet T, Caldas C, Stingl J, Green AR, Theis FJ, Göttgens B (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Schroeder T (2010) Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell 6:203–207

    CAS  CrossRef  PubMed  Google Scholar 

  5. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB, McLeod J, Laurenti E, Dunant CF, JD MP, Stein LD, Dror Y, Dick JE (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116

    CrossRef  PubMed  Google Scholar 

  6. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, Sandberg R, Mjösberg J (2016) The heterogeneity of human CD127 innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 17:451–460

    CrossRef  PubMed  Google Scholar 

  9. Hernández PP, Strzelecka PM, Athanasiadis EI, Hall D, Robalo AF, Collins CM, Boudinot P, Levraud J-P, Cvejic A (2018) Single-cell transcriptional analysis reveals ILC-like cells in zebrafish. Sci Immunol 3:eaau5265. https://doi.org/10.1126/sciimmunol.aau5265

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe’er D, Rahman A, Amit I, Merad M (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765.e17

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Svensson V, Vento-Tormo R, Teichmann SA (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13:599–604

    CAS  CrossRef  PubMed  Google Scholar 

  12. Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 9:75

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Mincarelli L, Lister A, Lipscombe J, Macaulay IC (2018) Defining cell identity with single-cell omics. Proteomics 18:1700312

    CrossRef  PubMed Central  Google Scholar 

  14. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181

    CAS  CrossRef  PubMed  Google Scholar 

  15. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Picelli S (2019) Full-length single-cell RNA sequencing with smart-seq2. Methods Mol Biol 1979:25–44

    CAS  CrossRef  PubMed  Google Scholar 

  17. ExternaRNAl RNARNA Controls Consortium (2005) Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics 6:150

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cvejic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Strzelecka, P.M., Ranzoni, A.M., Cvejic, A. (2021). Single-Cell Transcriptomic Analysis of Hematopoietic Cells. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols