Skip to main content

Analysis and Isolation of Mouse Leukemic Stem Cells

  • 1112 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2185)


Flow cytometry has been widely used in basic and clinical research for analysis of a variety of normal and malignant cells. Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) can be highly purified by flow cytometry. Isolated HSCs and LSCs can be functionally identified by transplantation assays and can also be studied at the molecular level. Here we describe the flow cytometry methods for analysis and isolation of mouse HSCs and LSCs.

Key words

  • Hematopoietic stem cells (HSCs)
  • Leukemic stem cells (LSCs )
  • Flow cytometry
  • Immunophenotype

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0810-4_4
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0810-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43(3):404–409.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D, Busch K, Rode I, Klapproth K, Dietlein N, Quedenau C, Chen W, Sauer S, Wolf S, Hofer T, Rodewald HR (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548(7668):456–460.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Ganuza M, McKinney-Freeman S (2017) Hematopoietic stem cells under pressure. Curr Opin Hematol 24(4):314–321.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Dong F, Bai H, Wang X, Zhang S, Wang Z, Xie M, Zhang S, Wang J, Hao S, Cheng T, Ema H (2019) Mouse acute leukemia develops independent of self-renewal and differentiation potentials in hematopoietic stem and progenitor cells. Blood Adv 3(3):419–431.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Liu Z, Zhang S, Wang X, Bai H, Xie M, Dong F, Ema H (2019) Lineage marker expression on mouse hematopoietic stem cells. Exp Hematol 76(13–23):e12.

    CAS  CrossRef  Google Scholar 

  8. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y, Kondo H, Takano H, Nakauchi H (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1(6):2979–2987.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Kent DG, Dykstra BJ, Eaves CJ (2016) Isolation and assessment of single long-term reconstituting hematopoietic stem cells from adult mouse bone marrow. Curr Protoc Stem Cell Biol 38:2A 4 1–2A 4 24.

    CrossRef  Google Scholar 

  11. Gur-Cohen S, Itkin T, Chakrabarty S, Graf C, Kollet O, Ludin A, Golan K, Kalinkovich A, Ledergor G, Wong E, Niemeyer E, Porat Z, Erez A, Sagi I, Esmon CT, Ruf W, Lapidot T (2015) PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 21(11):1307–1317.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M, Pombo de Oliveira M, Renneville A, Villarese P, Macintyre E, Cave H, Clappier E, Mass-Malo K, Zuna J, Trka J, De Braekeleer E, De Braekeleer M, Oh SH, Tsaur G, Fechina L, van der Velden VH, van Dongen JJ, Delabesse E, Binato R, Silva ML, Kustanovich A, Aleinikova O, Harris MH, Lund-Aho T, Juvonen V, Heidenreich O, Vormoor J, Choi WW, Jarosova M, Kolenova A, Bueno C, Menendez P, Wehner S, Eckert C, Talmant P, Tondeur S, Lippert E, Launay E, Henry C, Ballerini P, Lapillone H, Callanan MB, Cayuela JM, Herbaux C, Cazzaniga G, Kakadiya PM, Bohlander S, Ahlmann M, Choi JR, Gameiro P, Lee DS, Krauter J, Cornillet-Lefebvre P, Te Kronnie G, Schafer BW, Kubetzko S, Alonso CN, Zur Stadt U, Sutton R, Venn NC, Izraeli S, Trakhtenbrot L, Madsen HO, Archer P, Hancock J, Cerveira N, Teixeira MR, Lo Nigro L, Moricke A, Stanulla M, Schrappe M, Sedek L, Szczepanski T, Zwaan CM, Coenen EA, van den Heuvel-Eibrink MM, Strehl S, Dworzak M, Panzer-Grumayer R, Dingermann T, Klingebiel T, Marschalek R (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Lu Z, Xie J, Wu G, Shen J, Collins R, Chen W, Kang X, Luo M, Zou Y, Huang LJ, Amatruda JF, Slone T, Winick N, Scherer PE, Zhang CC (2017) Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat Med 23(1):79–90.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Cheng H, Hao S, Liu Y, Pang Y, Ma S, Dong F, Xu J, Zheng G, Li S, Yuan W, Cheng T (2015) Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood 126(11):1302–1313.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Hu X, Shen H, Tian C, Yu H, Zheng G, XuFeng R, Ju Z, Xu J, Wang J, Cheng T (2009) Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood 114(18):3783–3792.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Sugihara E, Shimizu T, Kojima K, Onishi N, Kai K, Ishizawa J, Nagata K, Hashimoto N, Honda H, Kanno M, Miwa M, Okada S, Andreeff M, Saya H (2012) Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor. Oncogene 31(23):2849–2861.

    CAS  CrossRef  PubMed  Google Scholar 

Download references


This work was supported by the grant from the National Natural Science Foundation of China (81670105).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hideo Ema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Dong, F., Bai, H., Ema, H. (2021). Analysis and Isolation of Mouse Leukemic Stem Cells. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols