Skip to main content

Bioinformatic Methods to Identify Mutational Signatures in Cancer

Part of the Methods in Molecular Biology book series (MIMB,volume 2185)

Abstract

The genome of a cancer contains somatic mutations that reflect the activities of endogenous and exogenous mutational processes, with each mutational process imprinting a characteristic mutational signature. Computational analysis of somatic mutations derived from next-generation sequencing data allows revealing the mutational signatures operative in a set of cancer genomes. In this chapter, we briefly review the concept of mutational signatures and the tools available for deciphering mutational signatures. Further, we provide a quick guide as well as an in-depth protocol for deciphering mutational signatures using the tool SigProfilerExtractor and review the results generated from an example dataset of cancer genomes.

Key words

  • Cancer
  • Mutations
  • Mutational signatures
  • Bioinformatics
  • SigProfilerExtractor

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0810-4_28
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0810-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489. https://doi.org/10.1126/science.aab4082

    CrossRef  CAS  PubMed  Google Scholar 

  2. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–259. https://doi.org/10.1016/j.celrep.2012.12.008

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pon JR, Marra MA (2015) Driver and Passenger Mutations in Cancer. Annu Rev Pathol Mech Dis 10:25–50. https://doi.org/10.1146/annurev-pathol-012414-040312

    CrossRef  CAS  Google Scholar 

  4. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183. https://doi.org/10.1038/nrc1299

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal 6:pl1–pl1. https://doi.org/10.1126/scisignal.2004088

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075

    CrossRef  CAS  PubMed  Google Scholar 

  7. Alexandrov LB, Kim J, Haradhvala NJ et al (2018) The Repertoire of Mutational Signatures in Human Cancer. In: Cancer Biology

    Google Scholar 

  8. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791. https://doi.org/10.1038/44565

    CrossRef  CAS  PubMed  Google Scholar 

  9. Choo J, Lee C, Reddy CK, Park H (2013) UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE Trans Vis Comput Graph 19:1992–2001. https://doi.org/10.1109/TVCG.2013.212

    CrossRef  PubMed  Google Scholar 

  10. Neher RA, Mitkovski M, Kirchhoff F et al (2009) Blind source separation techniques for the decomposition of multiply labeled fluorescence images. Biophys J 96:3791–3800. https://doi.org/10.1016/j.bpj.2008.10.068

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Innami S, Kasai H (2012) NMF-based environmental sound source separation using time-variant gain features. Comput Math Appl 64:1333–1342. https://doi.org/10.1016/j.camwa.2012.03.077

    CrossRef  Google Scholar 

  12. Hoyer PO (2003) Modeling receptive fields with non-negative sparse coding. Neurocomputing 52–54:547–552. https://doi.org/10.1016/S0925-2312(02)00782-8

    CrossRef  Google Scholar 

  13. Behnke S (2003) Discovering hierarchical speech features using convolutional non-negative matrix factorization. In: Proceedings of the International Joint Conference on Neural Networks, 2003. IEEE, Portland, Oregon USA, pp 2758–2763

    Google Scholar 

  14. Cooper M, Foote J (2002) Summarizing video using non-negative similarity matrix factorization. In: In, vol 2002. IEEE Workshop on Multimedia Signal Processing. IEEE, St.Thomas, VI, USA, pp 25–28

    Google Scholar 

  15. Lu J, Xu B, Yang H (2003) Matrix dimensionality reduction for mining Web logs. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE Comput. Soc, Halifax, NS, Canada, pp 405–408

    Google Scholar 

  16. Berry MW, Browne M, Langville AN et al (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52:155–173. https://doi.org/10.1016/j.csda.2006.11.006

    CrossRef  Google Scholar 

  17. Devarajan K (2008) Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 4:e1000029. https://doi.org/10.1371/journal.pcbi.1000029

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergstrom EN, Huang MN, Mahto U et al (2019) SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20:685. https://doi.org/10.1186/s12864-019-6041-2

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Fischer A, Illingworth CJR, Campbell PJ, Mustonen V (2013) EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biol 14:R39. https://doi.org/10.1186/gb-2013-14-4-r39

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosales RA, Drummond RD, Valieris R et al (2017) signeR: an empirical Bayesian approach to mutational signature discovery. Bioinformatics 33:8–16. https://doi.org/10.1093/bioinformatics/btw572

    CrossRef  CAS  PubMed  Google Scholar 

  21. Ardin M, Cahais V, Castells X et al (2016) MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes. BMC Bioinformatics 17:170. https://doi.org/10.1186/s12859-016-1011-z

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gehring JS, Fischer B, Lawrence M, Huber W (2015) SomaticSignatures: inferring mutational signatures from single-nucleotide variants: Fig. 1. Bioinformatics:btv408. https://doi.org/10.1093/bioinformatics/btv408

  23. Macintyre G, Goranova TE, De Silva D et al (2018) Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 50:1262–1270. https://doi.org/10.1038/s41588-018-0179-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayakonda A, Lin D-C, Assenov Y et al (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blokzijl F, Janssen R, van Boxtel R, Cuppen E (2018) MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10:33. https://doi.org/10.1186/s13073-018-0539-0

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149:979–993. https://doi.org/10.1016/j.cell.2012.04.024

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    CrossRef  Google Scholar 

  28. Bro R, De Jong S (1997) A fast non-negativity-constrained least squares algorithm. J Chemom J Chemom Soc 11:393–401

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmil B. Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Islam, S.M.A., Alexandrov, L.B. (2021). Bioinformatic Methods to Identify Mutational Signatures in Cancer. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols