Abstract
The genome of a cancer contains somatic mutations that reflect the activities of endogenous and exogenous mutational processes, with each mutational process imprinting a characteristic mutational signature. Computational analysis of somatic mutations derived from next-generation sequencing data allows revealing the mutational signatures operative in a set of cancer genomes. In this chapter, we briefly review the concept of mutational signatures and the tools available for deciphering mutational signatures. Further, we provide a quick guide as well as an in-depth protocol for deciphering mutational signatures using the tool SigProfilerExtractor and review the results generated from an example dataset of cancer genomes.
Key words
- Cancer
- Mutations
- Mutational signatures
- Bioinformatics
- SigProfilerExtractor
This is a preview of subscription content, access via your institution.
Buying options




References
Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489. https://doi.org/10.1126/science.aab4082
Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–259. https://doi.org/10.1016/j.celrep.2012.12.008
Pon JR, Marra MA (2015) Driver and Passenger Mutations in Cancer. Annu Rev Pathol Mech Dis 10:25–50. https://doi.org/10.1146/annurev-pathol-012414-040312
Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183. https://doi.org/10.1038/nrc1299
Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal 6:pl1–pl1. https://doi.org/10.1126/scisignal.2004088
Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075
Alexandrov LB, Kim J, Haradhvala NJ et al (2018) The Repertoire of Mutational Signatures in Human Cancer. In: Cancer Biology
Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791. https://doi.org/10.1038/44565
Choo J, Lee C, Reddy CK, Park H (2013) UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE Trans Vis Comput Graph 19:1992–2001. https://doi.org/10.1109/TVCG.2013.212
Neher RA, Mitkovski M, Kirchhoff F et al (2009) Blind source separation techniques for the decomposition of multiply labeled fluorescence images. Biophys J 96:3791–3800. https://doi.org/10.1016/j.bpj.2008.10.068
Innami S, Kasai H (2012) NMF-based environmental sound source separation using time-variant gain features. Comput Math Appl 64:1333–1342. https://doi.org/10.1016/j.camwa.2012.03.077
Hoyer PO (2003) Modeling receptive fields with non-negative sparse coding. Neurocomputing 52–54:547–552. https://doi.org/10.1016/S0925-2312(02)00782-8
Behnke S (2003) Discovering hierarchical speech features using convolutional non-negative matrix factorization. In: Proceedings of the International Joint Conference on Neural Networks, 2003. IEEE, Portland, Oregon USA, pp 2758–2763
Cooper M, Foote J (2002) Summarizing video using non-negative similarity matrix factorization. In: In, vol 2002. IEEE Workshop on Multimedia Signal Processing. IEEE, St.Thomas, VI, USA, pp 25–28
Lu J, Xu B, Yang H (2003) Matrix dimensionality reduction for mining Web logs. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE Comput. Soc, Halifax, NS, Canada, pp 405–408
Berry MW, Browne M, Langville AN et al (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52:155–173. https://doi.org/10.1016/j.csda.2006.11.006
Devarajan K (2008) Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 4:e1000029. https://doi.org/10.1371/journal.pcbi.1000029
Bergstrom EN, Huang MN, Mahto U et al (2019) SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20:685. https://doi.org/10.1186/s12864-019-6041-2
Fischer A, Illingworth CJR, Campbell PJ, Mustonen V (2013) EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biol 14:R39. https://doi.org/10.1186/gb-2013-14-4-r39
Rosales RA, Drummond RD, Valieris R et al (2017) signeR: an empirical Bayesian approach to mutational signature discovery. Bioinformatics 33:8–16. https://doi.org/10.1093/bioinformatics/btw572
Ardin M, Cahais V, Castells X et al (2016) MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes. BMC Bioinformatics 17:170. https://doi.org/10.1186/s12859-016-1011-z
Gehring JS, Fischer B, Lawrence M, Huber W (2015) SomaticSignatures: inferring mutational signatures from single-nucleotide variants: Fig. 1. Bioinformatics:btv408. https://doi.org/10.1093/bioinformatics/btv408
Macintyre G, Goranova TE, De Silva D et al (2018) Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 50:1262–1270. https://doi.org/10.1038/s41588-018-0179-8
Mayakonda A, Lin D-C, Assenov Y et al (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118
Blokzijl F, Janssen R, van Boxtel R, Cuppen E (2018) MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10:33. https://doi.org/10.1186/s13073-018-0539-0
Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149:979–993. https://doi.org/10.1016/j.cell.2012.04.024
Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Bro R, De Jong S (1997) A fast non-negativity-constrained least squares algorithm. J Chemom J Chemom Soc 11:393–401
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Islam, S.M.A., Alexandrov, L.B. (2021). Bioinformatic Methods to Identify Mutational Signatures in Cancer. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_28
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0810-4_28
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0809-8
Online ISBN: 978-1-0716-0810-4
eBook Packages: Springer Protocols