Skip to main content

Bioinformatic Methods to Identify Mutational Signatures in Cancer

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

Abstract

The genome of a cancer contains somatic mutations that reflect the activities of endogenous and exogenous mutational processes, with each mutational process imprinting a characteristic mutational signature. Computational analysis of somatic mutations derived from next-generation sequencing data allows revealing the mutational signatures operative in a set of cancer genomes. In this chapter, we briefly review the concept of mutational signatures and the tools available for deciphering mutational signatures. Further, we provide a quick guide as well as an in-depth protocol for deciphering mutational signatures using the tool SigProfilerExtractor and review the results generated from an example dataset of cancer genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489. https://doi.org/10.1126/science.aab4082

    Article  CAS  PubMed  Google Scholar 

  2. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3:246–259. https://doi.org/10.1016/j.celrep.2012.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pon JR, Marra MA (2015) Driver and Passenger Mutations in Cancer. Annu Rev Pathol Mech Dis 10:25–50. https://doi.org/10.1146/annurev-pathol-012414-040312

    Article  CAS  Google Scholar 

  4. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183. https://doi.org/10.1038/nrc1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal 6:pl1–pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  7. Alexandrov LB, Kim J, Haradhvala NJ et al (2018) The Repertoire of Mutational Signatures in Human Cancer. In: Cancer Biology

    Google Scholar 

  8. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791. https://doi.org/10.1038/44565

    Article  CAS  PubMed  Google Scholar 

  9. Choo J, Lee C, Reddy CK, Park H (2013) UTOPIAN: User-Driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization. IEEE Trans Vis Comput Graph 19:1992–2001. https://doi.org/10.1109/TVCG.2013.212

    Article  PubMed  Google Scholar 

  10. Neher RA, Mitkovski M, Kirchhoff F et al (2009) Blind source separation techniques for the decomposition of multiply labeled fluorescence images. Biophys J 96:3791–3800. https://doi.org/10.1016/j.bpj.2008.10.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Innami S, Kasai H (2012) NMF-based environmental sound source separation using time-variant gain features. Comput Math Appl 64:1333–1342. https://doi.org/10.1016/j.camwa.2012.03.077

    Article  Google Scholar 

  12. Hoyer PO (2003) Modeling receptive fields with non-negative sparse coding. Neurocomputing 52–54:547–552. https://doi.org/10.1016/S0925-2312(02)00782-8

    Article  Google Scholar 

  13. Behnke S (2003) Discovering hierarchical speech features using convolutional non-negative matrix factorization. In: Proceedings of the International Joint Conference on Neural Networks, 2003. IEEE, Portland, Oregon USA, pp 2758–2763

    Google Scholar 

  14. Cooper M, Foote J (2002) Summarizing video using non-negative similarity matrix factorization. In: In, vol 2002. IEEE Workshop on Multimedia Signal Processing. IEEE, St.Thomas, VI, USA, pp 25–28

    Google Scholar 

  15. Lu J, Xu B, Yang H (2003) Matrix dimensionality reduction for mining Web logs. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE Comput. Soc, Halifax, NS, Canada, pp 405–408

    Google Scholar 

  16. Berry MW, Browne M, Langville AN et al (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52:155–173. https://doi.org/10.1016/j.csda.2006.11.006

    Article  Google Scholar 

  17. Devarajan K (2008) Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 4:e1000029. https://doi.org/10.1371/journal.pcbi.1000029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergstrom EN, Huang MN, Mahto U et al (2019) SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20:685. https://doi.org/10.1186/s12864-019-6041-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fischer A, Illingworth CJR, Campbell PJ, Mustonen V (2013) EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biol 14:R39. https://doi.org/10.1186/gb-2013-14-4-r39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosales RA, Drummond RD, Valieris R et al (2017) signeR: an empirical Bayesian approach to mutational signature discovery. Bioinformatics 33:8–16. https://doi.org/10.1093/bioinformatics/btw572

    Article  CAS  PubMed  Google Scholar 

  21. Ardin M, Cahais V, Castells X et al (2016) MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes. BMC Bioinformatics 17:170. https://doi.org/10.1186/s12859-016-1011-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gehring JS, Fischer B, Lawrence M, Huber W (2015) SomaticSignatures: inferring mutational signatures from single-nucleotide variants: Fig. 1. Bioinformatics:btv408. https://doi.org/10.1093/bioinformatics/btv408

  23. Macintyre G, Goranova TE, De Silva D et al (2018) Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet 50:1262–1270. https://doi.org/10.1038/s41588-018-0179-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayakonda A, Lin D-C, Assenov Y et al (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756. https://doi.org/10.1101/gr.239244.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blokzijl F, Janssen R, van Boxtel R, Cuppen E (2018) MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med 10:33. https://doi.org/10.1186/s13073-018-0539-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational Processes Molding the Genomes of 21 Breast Cancers. Cell 149:979–993. https://doi.org/10.1016/j.cell.2012.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  28. Bro R, De Jong S (1997) A fast non-negativity-constrained least squares algorithm. J Chemom J Chemom Soc 11:393–401

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmil B. Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Islam, S.M.A., Alexandrov, L.B. (2021). Bioinformatic Methods to Identify Mutational Signatures in Cancer. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics