Kuppers R, Schwering I, Braininger A et al (2002) Biology of Hodgkin’s lymphoma, Ann Oncol. 13(Suppl 1):11
Google Scholar
Brown G, Hogg N, Greaves MF (1975) A candidate leukemia-specific antigen. Nature 258:454–456
CAS
CrossRef
PubMed
Google Scholar
Brown G, Capellaro D, Greaves MF (1975) Leukemia-associated antigens in man. JNCI 55:1281–1289
CAS
CrossRef
PubMed
Google Scholar
Greaves MF, Brown G, Haywood A (1976) A panel of markers for human lymphocyte subpopulations. Applications to disease. In: Beers RF Jnr, Basset E (eds) The role of immunological factors in infectious, allergic and autoimmune processes. Raven Press, New York
Google Scholar
Brown G, Greaves MF, Lister TA, Rapson N et al (1974) The expression of human T and B lymphocyte cell surface markers on leukemia cells. Lancet 7883:753–755
CrossRef
Google Scholar
Greaves MF, Brown G, Capellaro D et al (1976) Immunological approaches to the identification of leukaemic cells. In: Wybran J, Staquet MJ (eds) Clinical tumour immunology. Pergamon, Oxford
Google Scholar
Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403
CAS
CrossRef
PubMed
Google Scholar
Graf T (2008) Blood lines redrawn. Nature 452:702–703
CAS
CrossRef
PubMed
Google Scholar
Brown G, Hughes P, Michell R et al (2008) Ordered commitment of hematopoietic stem cells to lineage fates. In: Burnsides WB, Ellsley RH (eds) Stem cell applications in disease and health. Nova Science Publishers, Inc., New York
Google Scholar
Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672
CAS
CrossRef
PubMed
Google Scholar
Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197
CAS
CrossRef
PubMed
Google Scholar
Greaves M, Delia D, Robinson J et al (1981) Exploitation of monoclonal antibodies. A “who’s who” of haemopoietic malignanccy. Blood Cells 7:257–280
CAS
PubMed
Google Scholar
Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukemia stem cell initiated by MLL-AF9. Nature 442:257–268
CrossRef
CAS
Google Scholar
Somervaille TC, Cleary ML (2006) Identification and characterisation of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268
CAS
CrossRef
PubMed
Google Scholar
Fialkow PJ, Jaconson RJ, Papayannopoulou T (1997) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, eryrthrocyte, platelet and monocyte/macrophage. Am J Med 63:125–130
CrossRef
Google Scholar
Bennett JM, Catovsky D, Daniel MT (1976) Proposals for the classification of the acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol 33:451–458
CAS
CrossRef
PubMed
Google Scholar
Lenz G, Wright GW, Emre NC et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105:13520–13525
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ross ME, Zhou X, Song G et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102:2951–2959
CAS
CrossRef
PubMed
Google Scholar
Yeoh EJ, Ross ME, Shurtkweff SA et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143
CAS
CrossRef
PubMed
Google Scholar
Kern W, Kohlmann A, Schnittger S et al (2004) Gene expression profiling as a diagnostic tool in acute myeloid leukemia. Am J Pharmacogenomics 4:225–237
CAS
CrossRef
PubMed
Google Scholar
Kohlmann A, Schoch C, Schnittger S et al (2004) Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 18:63–71
CAS
CrossRef
PubMed
Google Scholar
Downing JR, Wilson RK, Zhang J et al (2012) The pediatric cancer genome project. Nat Genet 44:619–622
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Morin RD, Mungall K, Pleasance E et al (2013) Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122:1256–1265
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ceredig R, Rolink AG, Brown G (2009) Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol 9:293–300
CAS
CrossRef
PubMed
Google Scholar
Velten L, Haas SF, Raffel S et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nestorowa S, Hamey FK, Pijuan Sala B et al (2006) A single-cell resolution map of mouse haematopoietic stem and progenitor cell differentiation. Blood 128:e20–e31
CrossRef
CAS
Google Scholar
Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381
CAS
CrossRef
PubMed
Google Scholar
Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808
CAS
CrossRef
PubMed
Google Scholar
Metcalf D (1993) Haematopoietic regulators: redundancy or subtlety? Blood 82:3515–3523
CAS
CrossRef
PubMed
Google Scholar
Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor (CSF-1) and antagonists of CSF-1 recptor (CSF-1R) signaling. Blood 119:1810–1820
CAS
CrossRef
PubMed
Google Scholar
Gasson JC (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 77:1131–1145
CAS
CrossRef
PubMed
Google Scholar
Shinjo K, Takeshita A, Higuchi M et al (1997) Erythropoietin receptor expression on human bone marrow erythroid precursor cells by a newly-devised quantitative flow-cytometric assay. Brit J Haematol 96:551–558
CAS
CrossRef
Google Scholar
Mooney CJ, Cunningham A, Tsapogas P et al (2017) Selective expression of flt3 within the mouse haematopoietic stem cell compartment. Int J Mol Sci 18:E1037
CrossRef
CAS
PubMed
Google Scholar
Schuettpelz LG, Borgerding JN, Christopher MJ et al (2014) G-CSF regulates haematopoietic stem cell activity, in part, through activation of toll-like receptor signalling. Leukemia 28:1851–1860
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kondo M, Scherer DC, Miyamoto T et al (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407:383–386
CAS
CrossRef
PubMed
Google Scholar
Mossadegh-Keller N, Sarrazin S, Kandalla PK et al (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ninos JM, Jefferies LC, Cogle CR et al (2006) The thrombopoietin receptor, cMpl, is a selective marker for human haematopoietic stem cells. J Transl Med 4:9
CrossRef
PubMed
PubMed Central
Google Scholar
Notta F, Zandi S, Takayama N et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116
CrossRef
CAS
PubMed
Google Scholar
Balciunaite G, Ceredig R, Massa S et al (2005) A b220+ cd117+ cd19- haematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur J Immunol 35:2019–2030
CAS
CrossRef
PubMed
Google Scholar
Alberti-Servera L, von Muenchow L, Tsapogas P et al (2017) Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors. EMBO J 36:3619–3633
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Grover A, Mancini E, Moore S et al (2014) Erythropoietin guides multipotent haematopoietic progenitor cells toward an erythroid fate. J Exp Med 211:181–188
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Metcalf D, Burgess AW (1982) Clonal analysis of progenitor cell commitment of granulocyte or macrophage production. J Cell Physiol 111:275–283
CAS
CrossRef
PubMed
Google Scholar
Rieger MA, Hoppe PS, Smejkal BM et al (2009) Haematopoietic cytokines can instruct lineage choice. Science 325:217–218
CAS
CrossRef
PubMed
Google Scholar
Tsapogas P, Swee LK, Nusser A et al (2014) In vivo evidence for an instructive role of fms-like tyrosine kinase-3 (flt3) ligand in haematopoietic development. Haematologica 99:638–646
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Balciunaite G, Ceredig R, Rolink AG (2005) The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer but no B-lymphocyte potential. Blood 105:1930–1936
CAS
CrossRef
PubMed
Google Scholar
Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among dn1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745
CAS
CrossRef
PubMed
Google Scholar
Brown G, Tsapogas P, Ceredig R (2018) The changing face of haematopoiesis: a spectrum of options is available to stem cells. Immunol Cell Biol 96:898–911
CrossRef
PubMed
Google Scholar
Kikushige Y, Ishikawa F, Miyamoto T et al (2011) Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20:246–259
CAS
CrossRef
PubMed
Google Scholar
Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organised as a hierarchy that originates from a primitive haematopoietic cell. Nat Med 197:461–463
Google Scholar
Cobaleda C, Sanchez-Garcia I (2009) B-cell acute lymphoblastic leukemia: towards understanding its cellular origin. BioEssays 31:600–660
CrossRef
PubMed
Google Scholar
Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Vicente-Duenas C, Perez-Caro M, Abollo-Jimenez F et al (2009) Stem-cell driven cancer: “hands-off” regulation of cancer development. Cell Cycle 8:1314–1318
CAS
CrossRef
PubMed
Google Scholar
Vicente-Dueñas C, Romero-Camarero I, Cobaleda C et al (2013) Function of oncogenes in cancer development: a changing paradigm. EMBO J 32:1502–1513
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Sachs L (1980) Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy. Proc Natl Acad Sci U S A 77:6152–6156
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Brown G, Hughes PJ, Michell RH (2003) Cell differentiation and proliferation – simultaneous but independent? Exp Cell Res 291:282–288
CAS
CrossRef
PubMed
Google Scholar
Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ma Y, Dobbins SE, Sherborne AL et al (2013) Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 110:7429–7433
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Castellanos A, Pintado B, Weruaga E et al (1997) A BCR-ABL(p190) fusion gene made by homologousrecombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 90:2168–2174
CAS
CrossRef
PubMed
Google Scholar
García-Ramírez I, Bhatia S, Rodríguez-Hernández G et al (2018) Lmo2 expression defines tumor cell identity during T-cell leukemogenesis. EMBO J 37:e98783
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Caro M, Cobaleda C, González-Herrero I et al (2009) Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J 28:8–20
CrossRef
CAS
PubMed
Google Scholar
Greaves MF (1999) Molecular genetics, natural history and the demise of childhood leukemia. Eur J Cancer 35:173–185
CAS
CrossRef
PubMed
Google Scholar
Cox CV, Blair A (2005) A primitive cell origin for B-cell precursor ALL? Stem Cell Rev 1:189–196
CAS
CrossRef
PubMed
Google Scholar
Grimwade D, Enver T (2004) Acute promyelocytic leukemia: where does it stem from? Leukemia 18:375–384
CAS
CrossRef
PubMed
Google Scholar
Edwards RH, Wasik MA, Finan J et al (1999) Evidence for early haematopoietic progenitor cell involvement in acute promyelocytic leukemia. Am J Clin Pathol 112:819–827
CAS
CrossRef
PubMed
Google Scholar
Khan M, Siddiqui R, Naqvi K (2018) An update on classification, genetics, and clinical approach to mixed phenotype acute leukemia (MPAL). Ann Hematol 97:945–953
CAS
CrossRef
PubMed
Google Scholar
Kern W, Grossmann V, Roller A et al (2012) Mixed phenotype acute leukemia, T/myeloid, NOS(MPAL-TM) has a high DNMT3A mutation frequency and carries further genetic features of both AML and T-ALL: results of a comprehensive next-generation sequencing study analysing 32 genes. Blood 120:403
CrossRef
Google Scholar
Mulligan C (2012) Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122:3407–3416
CrossRef
CAS
Google Scholar
Muschen M, Lee S, Zhou G (2002) Molecular portraits of B cell lineage commitment. PNAS 99:10014–10019
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yeoh E-J, Ross ME, Shurtleff SA (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143
CAS
CrossRef
PubMed
Google Scholar
Torrano V, Procter J, Cardus P et al (2011) ETV6-RUNX1 promotes survival of early B lineage progenitor cells via a dysregulated erythropoietin receptor. Blood 118:4910–4918
CAS
CrossRef
PubMed
Google Scholar
de Lau WBM, Hurenkamp J, Berendes P et al (1998) The gene encoding the granulocyte colony-stimulating factor receptor is a target for deregulation in pre-B ALL by the t(1;19)-specific oncoprotein E2A-Pbx1. Oncogene 17:503–510
CrossRef
PubMed
Google Scholar
Brach MA, Henschler R, Mertelsmann RH et al (1991) Regulation of M-CSF expression by M-CSF: role of protein kinase C and transcription factor NF kappa B. Pathobiology 59:284–288
CAS
CrossRef
PubMed
Google Scholar
Zhang D-E, Hetherington CJ, Chen H-M et al (1994) The macrophage transcription factor PU.1 directs tissue specific expression of the macrophage colony-stimulating factor receptor. MCB 14:373–381
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Stanley ER, Chitu V (2014) CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 6:a021857
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Dahl R, Walsh JC, Lanki D et al (2003) Regulation of macrophage and neutrophil fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat Immunol 4:1029–1036
CAS
CrossRef
PubMed
Google Scholar
Smith LT, Hohaus S, Gonzalez DA et al (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promotor in myeloid cells. Blood 88:1234–1247
CAS
CrossRef
PubMed
Google Scholar
Hohaus S, Petrovick MS, Voso MT et al (1995) PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. MCB 15:5830–5845
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mizuki M, Schwable J, Steur C et al (2003) Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 101:3164–3173
CAS
CrossRef
PubMed
Google Scholar
Volpe G, Clarke M, Garcìa P et al (2015) Regulation of the Flt3 Gene in haematopoietic stem and early progenitor cells. PLoS One 10:e0138257
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Lowenberg B, Touw IP (1993) Hematopoeitc growth factors and their receptors in acute leukemia. Blood 81:281–292
CAS
CrossRef
PubMed
Google Scholar
Mueller BU, Pabst T, Osato M et al (2002) Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007
CAS
CrossRef
PubMed
Google Scholar
Rosenbauer F, Wagner K, Kutok JL et al (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36:624–630
CAS
CrossRef
PubMed
Google Scholar
Antony-Defre I, Paul A, Leite J et al (2017) Pharmacological inhibition of the transcription factor PU.1 in leukemia. J Clin Invest 127:4297–4313
CrossRef
Google Scholar
Pabst T, Mueller BU (2009) Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin Cancer Res 15:5303–5307
CAS
CrossRef
PubMed
Google Scholar
Hackanson B, Bennett KL, Brena RM et al (2008) Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 68:3142–3151
CAS
CrossRef
PubMed
Google Scholar
Lee S, Chen J, Zhou G et al (2006) Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc Natl Acad Sci U S A 103:1030–1035
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Xu Y, Milazzo JP, Somerville TDD et al (2018) A TFIID-SAGA perturbation that targets MYB and suppresses acute myeloid leukemia. Cancer Cell 33:13–28
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Graham SM, Jorgensen HG, Allan E et al (2002) Primitive, quiescent Philadelphia positive stem cells from patients with chronic myeloid leukemia are insensitive to ST1571 in vitro. Blood 99:319–325
CAS
CrossRef
PubMed
Google Scholar
Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284
CAS
CrossRef
PubMed
Google Scholar
Riedell PA, Smith SM (2018) Should we use cell of origin and dual-protein expression in treating DLBCL. Clin Lymphoma Myeloma Leuk 18:91–97
CrossRef
PubMed
Google Scholar