Abstract
Acute myeloid leukemia (AML) is a disease caused by multiple distinct genomic events in the hematopoietic stem cell and progenitor compartment. To gain insight into the link between genetic mutations in AML and their clinical significance, AML mouse models are often employed. However, the breeding of genetically modified mouse models is a resource-intensive and time-consuming endeavor. Here, we describe a viral-based protocol to study the role of candidate leukemia stem cell (LSC) genes. Transplantation of virally transduced oncogenic drivers for AML with virally altered expression of candidate leukemia associated genes in murine primary bone marrow cells, is an effective alternative method to assess the impact of cooperating mutations in AML.
Key words
- Hematopoietic stem cells
- Leukemia stem cells
- Acute myeloid leukemia
- Transplantation
- Retroviral transduction
- Lentiviral transduction
This is a preview of subscription content, access via your institution.
Buying options

References
Shlush LI, Zandi S, Mitchell A et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328
Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. https://doi.org/10.1038/nm0797-730
Eppert K, Takenaka K, Lechman ER et al (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17:1086
Ng SWK, Mitchell A, Kennedy JA et al (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540:433–437. https://doi.org/10.1038/nature20598
Costello RT, Mallet F, Gaugler B et al (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403–4411
Ishikawa F, Yoshida S, Saito Y et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321. https://doi.org/10.1038/nbt1350
Boyd AL, Aslostovar L, Reid J et al (2018) Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell 34:483–498.e5. https://doi.org/10.1016/j.ccell.2018.08.007
Gregory TK, Wald D, Chen Y et al (2009) Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2:23. https://doi.org/10.1186/1756-8722-2-23
Ley TJ, Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074. https://doi.org/10.1056/NEJMoa1301689
White BS, DiPersio JF (2014) Genomic tools in acute myeloid leukemia: from the bench to the bedside. Cancer 120:1134–1144. https://doi.org/10.1002/cncr.28552
Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278. https://doi.org/10.1016/j.cell.2012.06.023
Woiterski J, Ebinger M, Witte KE et al (2013) Engraftment of low numbers of pediatric acute lymphoid and myeloid leukemias into NOD/SCID/IL2Rcgammanull mice reflects individual leukemogenecity and highly correlates with clinical outcome. Int J Cancer 133:1547–1556. https://doi.org/10.1002/ijc.28170
Pabst C, Bergeron A, Lavallee V-P et al (2016) GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127:2018–2027. https://doi.org/10.1182/blood-2015-11-683649
Cabezas-Wallscheid N, Eichwald V, de Graaf J et al (2013) Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 5:1804–1820. https://doi.org/10.1002/emmm.201302661
Lehnertz B, Zhang YW, Boivin I et al (2017) H3(K27M/I) mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood 130:2204–2214. https://doi.org/10.1182/blood-2017-03-774653
Whitt MA (2010) Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 169:365–374. https://doi.org/10.1016/j.jviromet.2010.08.006
Zhang YW, Cabezas-Wallscheid N (2019) Assessment of young and aged hematopoietic stem cell activity by competitive serial transplantation assays. Methods Mol Biol 2017:193–203. https://doi.org/10.1007/978-1-4939-9574-5_15
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Zhang, Y.W., Mess, J., Cabezas-Wallscheid, N. (2021). Characterizing the In Vivo Role of Candidate Leukemia Stem Cell Genes. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_19
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0810-4_19
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0809-8
Online ISBN: 978-1-0716-0810-4
eBook Packages: Springer Protocols