Skip to main content

Leukemic Stem Cell Culture in Cytokine-Free Medium

  • Protocol
  • First Online:
Book cover Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

  • 1936 Accesses

Abstract

Leukemia-initiating cells, also known as leukemic stem cells (LSCs), are experimentally defined by their ability to engraft immunocompromised mice and are believed to be a major cause of relapse in acute myeloid leukemia (AML). Despite the aggressive characteristics of acute leukemia, AML blasts are difficult to culture once removed from the patient, and LSCs, which are a minor fraction of the blast population, are especially difficult to transplant after culture. This impedes development of new therapies for AML that target LSCs. Here, we present a simple strategy to culture LSCs in cytokine-free medium and to perform flow cytometric analysis of the resulting cell population for the characterization of LSCs maintenance and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C, Young BD, Rohatiner AZ, Lister TA, Bonnet D (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107(3):1166–1173. https://doi.org/10.1182/blood-2005-06-2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woiterski J, Ebinger M, Witte KE, Goecke B, Heininger V, Philippek M, Bonin M, Schrauder A, Rottgers S, Herr W, Lang P, Handgretinger R, Hartwig UF, Andre MC (2013) Engraftment of low numbers of pediatric acute lymphoid and myeloid leukemias into NOD/SCID/IL2Rcgammanull mice reflects individual leukemogenecity and highly correlates with clinical outcome. Int J Cancer 133(7):1547–1556. https://doi.org/10.1002/ijc.28170

    Article  CAS  PubMed  Google Scholar 

  3. van Gosliga D, Schepers H, Rizo A, van der Kolk D, Vellenga E, Schuringa JJ (2007) Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Exp Hematol 35(10):1538–1549. https://doi.org/10.1016/j.exphem.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  4. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V, Hundal J, Walker J, Varghese N, Erdmann-Gilmore P, Lichti CF, Meyer MR, Townsend RR, Wilson RK, Mardis ER, Ley TJ (2013) Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 121(9):1633–1643. https://doi.org/10.1182/blood-2012-09-459313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J, Taussig D, Gribben J, Lassailly F, Bonnet D (2014) A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl Med 3(4):520–529. https://doi.org/10.5966/sctm.2013-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pabst C, Krosl J, Fares I, Boucher G, Ruel R, Marinier A, Lemieux S, Hebert J, Sauvageau G (2014) Identification of small molecules that support human leukemia stem cell activity ex vivo. Nat Methods 11(4):436–442. https://doi.org/10.1038/nmeth.2847

    Article  CAS  PubMed  Google Scholar 

  7. Bhavanasi D, Wen KW, Liu X, Vergez F, Danet-Desnoyers G, Carroll M, Huang J, Klein PS (2017) Signaling mechanisms that regulate ex vivo survival of human acute myeloid leukemia initiating cells. Blood Cancer J 7(12):636. https://doi.org/10.1038/s41408-017-0003-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS (2012) Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 18(12):1778–1785. https://doi.org/10.1038/nm.2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, X., Klein, P.S. (2021). Leukemic Stem Cell Culture in Cytokine-Free Medium. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics