Skip to main content

Human T-ALL Xenografts

  • 1190 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2185)

Abstract

Intense chemotherapy regimens of patients diagnosed with T cell acute lymphoblastic leukemia (T-ALL) have proved successful for improving patient’s overall survival, especially in children. But still T-ALL treatment remains challenging, since side effects of chemotherapeutic drugs often worsen patient’s quality of life, and relapse rates remain significant. Hence, the availability of experimental animal models capable of recapitulating the biology of human T-ALL is obligatory as a critical tool to explore novel promising therapies directed against specific targets that have been previously validated in in vitro assays. For this purpose, patient-derived xenografts (PDX) of primary human T-ALL are currently of great interest as preclinical models for novel therapeutic strategies toward transition into clinical trials. In this chapter, we describe the lab workflow to perform PDX assays, from the initial processing of patient T-ALL samples, genetic in vitro modifications of leukemic cells by lentiviral transduction, inoculation routes, monitoring for disease development, and mouse organ examination, to administration of several treatments.

Key words

  • T-ALL
  • Patient-derived xenograft (PDX)
  • Lentiviral transduction
  • Immunodeficient mice
  • Bone marrow aspiration
  • Bioluminescence imaging

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0810-4_13
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0810-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373:1541–1552

    Google Scholar 

  2. Bene MC, Castoldi G, Knapp W et al (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9:1783–1786

    CAS  PubMed  Google Scholar 

  3. Liu Y, Easton J, Shao Y et al (2017) The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49(8):1211–1218

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Brammer JE, Saliba RM, Jorgensen JL et al (2017) Multi-center analysis of the effect of T-cell acute lymphoblastic leukemia subtype and minimal residual disease on allogeneic stem cell transplantation outcomes. Bone Marrow Transplant 52(1):20–27

    Google Scholar 

  5. Kataoka K, Iwanaga M, Yasunaga JI et al (2018) Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood 131(2):215–225

    Google Scholar 

  6. Petit A, Trinquand A, Chevret S et al (2018) Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood 131(3):289–300

    Google Scholar 

  7. Swerdlow SH, Campo E, Harris NL et al (2008) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: World Health Organization Classification of Tumors. International Agency for Research on Cancer (IARC), Lyon, France

    Google Scholar 

  8. Pui CH, Evans WE (2013) A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol 50(3):185–196

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Karrman K, Johansson B (2017) Pediatric T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 56(2):89–116

    CAS  CrossRef  PubMed  Google Scholar 

  10. Chiu PL, Jiang H, Dick JE (2010) Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood 116:5268–5279

    CAS  CrossRef  PubMed  Google Scholar 

  11. Krivtsov A, Wang X, Farnoud NR et al (2014) Patient derived xenograft (PDX) models recapitulate the genomic-driver composition of acute leukemia samples. Blood 124(21):286

    CrossRef  Google Scholar 

  12. Wang K, Sanchez-Martin M, Wang X et al (2017) Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31(1):151–158

    CAS  CrossRef  PubMed  Google Scholar 

  13. García-Peydró M, Fuentes P, Mosquera M et al (2018) The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest 128(7):2802–2818

    Google Scholar 

  14. Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 66(4):523–531

    CAS  CrossRef  PubMed  Google Scholar 

  15. Contag PR, Olomu IN, Stevenson DK et al (1998) Bioluminescent indicators in living mammals. Nat Med 4(2):245–247

    CAS  CrossRef  PubMed  Google Scholar 

  16. Bhadri VA, Cowley MJ, Kaplan W et al (2011) Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia. BMC Genomics 12:565

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Nijmeijer BA, Willemze R, Falkenburg JH (2002) An animal model for human cellular immunotherapy: specific eradication of human acute lymphoblastic leukemia by cytotoxic T lymphocytes in NOD/scid mice. Blood 100(2):654–660

    Google Scholar 

  18. Garaulet G, Alfranca A, Torrente M et al (2013) IL10 released by a new inflammation-regulated lentiviral system efficiently attenuates zymosan-induced arthritis. Mol Ther 21:119–130

    CAS  CrossRef  PubMed  Google Scholar 

  19. Didier Trono Lab Plasmid. http://www.addgene.org/Didier_Trono/. Accessed 20 Sept 2019

  20. van Rijn RS, Simonetti ER, Hagenbeek A et al (2003) A new xenograft model for graft-versus-host disease by intravenous transfer of human peripheral blood mononuclear cells in RAG2−/− gammac−/− double-mutant mice. Blood 102:2522–2531

    Google Scholar 

  21. Schmitt TM, de Pooter RF, Gronski MA et al (2004) Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 5(4):410–417

    CAS  CrossRef  PubMed  Google Scholar 

  22. González-García S, Mosquera M, Fuentes P et al (2019) IL-7R is essential for leukemia-initiating cell activity and pathogenesis of T-cell acute lymphoblastic leukemia. Blood 134(Sept 17):2171

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. The Jackson Laboratory (2006) Choosing an immunodeficient mouse model. https://www.jax.org/news-and-insights/2006/march/choosing-an-immunodeficient-mouse-model. Accessed 25 Sept 2019

  24. Baxter AG, Cooke A (1993) Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 42:1574–1578

    CAS  CrossRef  PubMed  Google Scholar 

  25. Christianson SW, Greiner DL, Hesselton RA et al (1997) Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158(8):3578–3586

    Google Scholar 

  26. DiSanto JP, Müller W, Guy-Grand D et al (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A 92(2):377–381

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Dickie MM (1975) Universal mouse numbering system. https://www.jax.org/jax-mice-and-services/customer-support/technical-support/breeding-and-husbandry-support/mouse-identification

  28. Yardeni T, Eckhaus M, Morris HD et al (2011) Retro-orbital injections in mice. Lab Anim 40(5):155–160

    CrossRef  Google Scholar 

  29. Machholz E, Mulder G, Ruiz C et al (2012) Manual restraint and common compound administration routes in mice and rats. J Vis Exp 26(67):2771

    Google Scholar 

  30. Jones K (2012) Oral Dosing (Gavage) in Adult Mice and Rats SOP. https://animalcare.ubc.ca/sites/default/files/documents/ACC-2012-Tech09%20Oral%20Dosing%20%28Gavage%29%20in%20the%20Mouse%20and%20Rat%29%20Updated%20Feb%202015%20final_cc%2C%20ka.pdf

    Google Scholar 

  31. Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim (NY) 34(9):39–43

    CrossRef  Google Scholar 

  32. Hoggatt J, Hoggatt AF, Tate TA et al (2016) Bleeding the laboratory mouse: not all methods are equal. Exp Hematol 44(2):132–137

    CrossRef  PubMed  Google Scholar 

  33. Chung YR, Kim E, Abdel-Wahab O (2014) Femoral bone marrow aspiration in live mice. J Vis Exp 5(89):51660

    Google Scholar 

  34. Living Image Software: User’s manual Version 4.0 (2002–2010) https://bcf.technion.ac.il/wp-content/uploads/2015/10/IVIS-200-Living_Image_40_User_Manual-8589.pdf. Accessed 25 Sept 2019

  35. JoVE Science Education Database. Lab Animal Research (2019) Sterile Tissue Harvest. JoVE, Cambridge, MA. Accessed 25 Sept 2019

    Google Scholar 

  36. Salmon P, Trono D (2007) Production and titration of lentiviral vectors. Curr Protoc Hum Genet 54:12.10.1–12.10.24

    Google Scholar 

  37. Ayllón V, Bueno C, Ramos-Mejía V et al (2015) The Notch ligand DLL4 specifically marks human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia 29(8):1741–1753

    CrossRef  PubMed  Google Scholar 

  38. de Pooter RF, Schmitt TM, Zúñiga-Pflücker JC (2006) In vitro generation of T lymphocytes from embryonic stem cells. Methods Mol Biol 330:113–121

    PubMed  Google Scholar 

  39. Richardson C (2014) Humane endpoints. https://www.nc3rs.org.uk/humane-endpoints. Accessed 28 Aug 2019

Download references

Acknowledgments

This work was supported in part by funds from Ministerio de Ciencia, Innovación y Universidades (SAF2016-75442-R, Agencia Estatal de Investigación/European Regional Development Fund, European Union), Fundación Asociación Española Contra el Cáncer (CICPF18030TORI), Fundación Uno Entre Cien Mil, Fundación Ramón Areces, and Fundación Lair. Institutional grants from the Fundación Ramón Areces and Banco de Santander to the Centro de Biología Molecular Severo Ochoa are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María L. Toribio or Sara González-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Fuentes, P., Toribio, M.L., González-García, S. (2021). Human T-ALL Xenografts. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols