Skip to main content

In-Depth Mass Spectrometry-Based Single-Cell and Nanoscale Proteomics

  • Protocol
  • First Online:
Leukemia Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2185))

Abstract

Leukemic stem cells are highly dynamic and heterogeneous. Analysis of leukemic stem cells at the single-cell level should provide a wealth of insights that would not be possible using bulk measurements. Mass spectrometry (MS)-based proteomic workflows can quantify hundreds or thousands of proteins from a biological sample and has proven invaluable for biomedical research, but samples comprising large numbers of cells are typically required due to limited sensitivity. Recent developments in sample processing, chromatographic separations, and MS instrumentation are now extending in-depth proteome profiling to single mammalian cells. Here, we describe specific techniques that increase the sensitivity of single-cell proteomics by orders of magnitude, enabling the promise of single-cell proteomics to become a reality. We anticipate such techniques can significantly advance the understanding of leukemic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Povinelli BJ, Rodriguez-Meira A, Mead AJ (2018) Single cell analysis of normal and leukemic hematopoiesis. Mol Asp Med 59:85–94. https://doi.org/10.1016/j.mam.2017.08.006

    Article  CAS  Google Scholar 

  2. Potter N, Miraki-Moud F, Ermini L, Titley I, Vijayaraghavan G, Papaemmanuil E, Campbell P, Gribben J, Taussig D, Greaves M (2019) Single cell analysis of clonal architecture in acute myeloid leukaemia. Leukemia 33(5):1113–1123. https://doi.org/10.1038/s41375-018-0319-2

    Article  CAS  PubMed  Google Scholar 

  3. Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH, Kan ZY, Han W, Park WY (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8(1):1–2. https://doi.org/10.1038/ncomms15081

    Article  CAS  Google Scholar 

  4. Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, Zhang Y, Neff N, Kowarsky M, Caneda C, Li G, Chang SD, Connolly ID, Li YM, Barres BA, Gephart MH, Quake SR (2017) Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21(5):1399–1410. https://doi.org/10.1016/j.celrep.2017.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C, Gillespie SM, Dionne D, Luo CC, Ravichandran H, Mylvaganam R, Mount C, Onozato ML, Nahed BV, Wakimoto H, Curry WT, Iafrate AJ, Rivera MN, Frosch MP, Golub TR, Brastianos PK, Getz G, Patel AP, Monje M, Cahill DP, Rozenblatt-Rosen O, Louis DN, Bernstein BE, Regev A, Suva ML (2017) Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355(6332):eaai8478. https://doi.org/10.1126/science.aai8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai HY, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3(10):960–969. https://doi.org/10.1074/mcp.M400055-MCP200

    Article  CAS  PubMed  Google Scholar 

  7. Vogel C, Abreu RD, Ko DJ, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400. https://doi.org/10.1038/msb.2010.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  9. Akbani R, Ng PKS, Werner HMJ, Shahmoradgoli M, Zhang F, Ju ZL, Liu WB, Yang JY, Yoshihara K, Li J, Ling SY, Seviour EG, Ram PT, Minna JD, Diao LX, Tong P, Heymach JV, Hill SM, Dondelinger F, Stadler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RGW, Liang H, Mukherjee S, Lu YL, Mills GB (2014) A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun 5:14. https://doi.org/10.1038/ncomms4887

    Article  CAS  Google Scholar 

  10. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806. https://doi.org/10.1038/nmeth1100

    Article  CAS  PubMed  Google Scholar 

  11. Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P (2013) Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 65:925–941. https://doi.org/10.1016/j.freeradbiomed.2013.08.184

    Article  CAS  PubMed  Google Scholar 

  12. Mnatsakanyan R, Shema G, Basik M, Batist G, Borchers CH, Sickmann A, Zahedi RP (2018) Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev Proteomics 15(6):515–535. https://doi.org/10.1080/14789450.2018.1483340

    Article  CAS  PubMed  Google Scholar 

  13. Thygesen C, Boll I, Finsen B, Modzel M, Larsen MR (2018) Characterizing disease-associated changes in post-translational modifications by mass spectrometry. Expert Rev Proteomics 15(3):245–258. https://doi.org/10.1080/14789450.2018.1433036

    Article  CAS  PubMed  Google Scholar 

  14. Fienberg HG, Nolan GP (2014) Mass cytometry to decipher the mechanism of nongenetic drug resistance in cancer. In: Fienberg HG, Nolan GP (eds) High-dimensional single cell analysis: mass cytometry, multi-parametric flow cytometry and Bioinformatic techniques, Current topics in microbiology and immunology, vol 377, pp 85–94. https://doi.org/10.1007/82_2014_365

    Chapter  Google Scholar 

  15. Di Palma S, Bodenmiller B (2015) Unraveling cell populations in tumors by single-cell mass cytometry. Curr Opin Biotechnol 31:122–129. https://doi.org/10.1016/j.copbio.2014,07.004

    Article  PubMed  Google Scholar 

  16. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen YF, Moore RJ, Shukla AK, Petyuk VA, Campbell-Thompson M, Mathews CE, Smith RD, Qian WJ, Kelly RT (2018) Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat Commun 9:882. https://doi.org/10.1038/s41467-018-03367-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Clair G, Chrisler WB, Shen YF, Zhao R, Shukla AK, Moore RJ, Misra RS, Pryhuber GS, Smith RD, Ansong C, Kelly RT (2018) Proteomic analysis of single mammalian cells enabled by microfluidic Nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew Chem-Int Edit 57(38):12370–12374. https://doi.org/10.1002/anie.201802843

    Article  CAS  Google Scholar 

  18. Zhu Y, Dou MW, Piehowski PD, Liang YR, Wang FJ, Chu RK, Chrisler WB, Smith JN, Schwarz KC, Shen YF, Shukla AK, Moore RJ, Smith RD, Qian WJ, Kelly RT (2018) Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to Nanodroplets. Mol Cell Proteomics 17(9):1864–1874. https://doi.org/10.1074/mcp.TIR118.000686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu Y, Podolak J, Zhao R, Shukla AK, Moore RJ, Thomas GV, Kelly RT (2018) Proteome profiling of 1 to 5 spiked circulating tumor cells isolated from whole blood using Immunodensity enrichment, laser capture microdissection, nanodroplet sample processing, and ultrasensitive nanoLC-MS. Anal Chem 90(20):11756–11759. https://doi.org/10.1021/acs.analchem.8b03268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu Y, Zhao R, Piehowski PD, Moore RJ, Lim S, Orphan VJ, Pasa-Tolic L, Qian WJ, Smith RD, Kelly RT (2018) Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. Int J Mass Spectrom 427:4–10. https://doi.org/10.1016/j.ijms.2017.08.016

    Article  CAS  PubMed  Google Scholar 

  21. Dou MW, Zhu Y, Liyu A, Liang YR, Chen J, Piehowski PD, Xu KR, Zhao R, Moore RJ, Atkinson MA, Mathews CE, Qian WJ, Kelly RT (2018) Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of < 1000 mammalian cells. Chem Sci 9(34):6944–6951. https://doi.org/10.1039/c8sc02680g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang YR, Zhu Y, Dou MW, Xu KR, Chu RK, Chrisler WB, Zhao R, Hixson KK, Kelly RT (2018) Spatially resolved proteome profiling of <200 cells from tomato fruit pericarp by integrating laser-capture microdissection with nanodroplet sample preparation. Anal Chem 90(18):11106–11114. https://doi.org/10.1021/acs.analchem.8b03005

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Piehowski PD, Kelly RT, Qian WJ (2018) Nanoproteomics comes of age. Expert Rev Proteomics 15(11):865–871. https://doi.org/10.1080/14789450.2018.1537787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dou M, Clair G, Tsai CF, Xu K, Chrisler WB, Sontag RL, Zhao R, Moore RJ, Liu T, Pasa-Tolic L, Smith RD, Shi T, Adkins JN, Qian WJ, Kelly RT, Ansong C, Zhu Y (2019) High-throughput single cell proteomics enabled by multiplex isobaric labelling in a nanodroplet sample preparation platform. Anal Chem 91:13119. https://doi.org/10.1021/acs.analchem.9b03349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dou MW, Chouinard CD, Zhu Y, Nagy G, Liyu AV, Ibrahim YM, Smith RD, Kelly RT (2019) Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Anal Bioanal Chem 411(21):5363–5372. https://doi.org/10.1007/s00216-018-1452-5

    Article  CAS  PubMed  Google Scholar 

  26. Dou MW, Tsai CF, Piehowski PD, Wang Y, Fillmore TL, Zhao R, Moore RJ, Zhang PF, Qian WJ, Smith RD, Liu T, Kelly RT, Shi TJ, Zhu Y (2019) Automated nanoflow two-dimensional reversed-phase liquid chromatography system enables in-depth proteome and phosphoproteome profiling of nanoscale samples. Anal Chem 91(15):9707–9715. https://doi.org/10.1021/acs.analchem.9b01248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piehowski PD, Zhu Y, Bramer LM, Stratton KG, Zhao R, Orton DJ, Moore RJ, Yuan J, Mitchell HJ, Gao Y, Webb-Robertson BJ, Dey SK, Kelly RT, Burnum-Johnson KE (2020) Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat Commun 11(1):1–2

    Article  Google Scholar 

  28. Xu KR, Liang YR, Piehowski PD, Dou MW, Schwarz KC, Zhao R, Sontag RL, Moore RJ, Zhu Y, Kelly RT (2019) Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells. Anal Bioanal Chem 411(19):4587–4596. https://doi.org/10.1007/s00216-018-1493-9

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Scheibinger M, Ellwanger DC, Krey JF, Choi D, Kelly RT, Heller S, Barr-Gillespie PG (2019) Single-cell proteomics reveals downregulation of TMSB4X to drive actin release for stereocilia assembly. bioRxiv:727412. https://doi.org/10.1101/727412

  30. Zhu Y, Zhang YX, Cai LF, Fang Q (2013) Sequential operation droplet Array: an automated microfluidic platform for Picoliter-scale liquid handling, analysis, and screening. Anal Chem 85(14):6723–6731. https://doi.org/10.1021/ac4006414

    Article  CAS  PubMed  Google Scholar 

  31. Kelly RT, Page JS, Luo QZ, Moore RJ, Orton DJ, Tang KQ, Smith RD (2006) Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal Chem 78(22):7796–7801. https://doi.org/10.1021/ac061133r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan T. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liang, Y., Truong, T., Zhu, Y., Kelly, R.T. (2021). In-Depth Mass Spectrometry-Based Single-Cell and Nanoscale Proteomics. In: Cobaleda, C., Sánchez-García, I. (eds) Leukemia Stem Cells. Methods in Molecular Biology, vol 2185. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0810-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0810-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0809-8

  • Online ISBN: 978-1-0716-0810-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics