Skip to main content

Proteomics Network Analysis of Polarized Macrophages

  • Protocol
  • First Online:
Immunometabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2184))

Abstract

Macrophages play a critical role in innate immunity through Toll-like receptor (TLR) signaling. Lipopolysaccharides (LPS) are a ligand of microbial origin that can trigger cell signaling in macrophages through TLRs and production of pro-inflammatory cytokines. Statin, a hypercholesterolemia drug, on the contrary, can reduce inflammatory cytokine production, and inflammation at large. Discovery-based quantitative proteomics is a useful method for unraveling complex protein networks and inter-protein interactions. Here, we describe protocols for studying the inflammatory proteomics network in RAW 264.7 cells (a model murine macrophage cell line) with the singular or sequential treatment of LPS and statin. We provide detailed protocols, including a quantitative proteomic analysis by mass spectrometry data, a protein network analysis by bioinformatics, and a validation of target through biochemical methods (e.g., immunocytochemistry, immunoblotting, gene silencing, and real-time PCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12:13–19. https://doi.org/10.1016/S0952-7915(99)00045-X

    Article  CAS  PubMed  Google Scholar 

  4. Bonta IL, Ben-Efraim S (1993) Involvement of inflammatory mediators in macrophage antitumor activity. J Leukoc Biol 54:613–626

    Article  CAS  PubMed  Google Scholar 

  5. LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 282:2340–2346

    Article  CAS  PubMed  Google Scholar 

  6. Bu D, Griffin G, Lichtman AH (2011) Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol 22:165–170. https://doi.org/10.1097/MOL.0b013e3283453e41

    Article  CAS  PubMed  Google Scholar 

  7. Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987. https://doi.org/10.1038/nrd1901

    Article  CAS  PubMed  Google Scholar 

  8. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaniv A, Alexander S, Victor N et al (2004) Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110:880–885

    Article  Google Scholar 

  10. Hackam DG, Mamdani M, Li P, Redelmeier DA (2006) Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet (London, England) 367:413–418. https://doi.org/10.1016/S0140-6736(06)68041-0

    Article  CAS  Google Scholar 

  11. Kamal AHM, Chakrabarty JK, Udden SMN et al (2018) Inflammatory proteomic network analysis of statin-treated and lipopolysaccharide-activated macrophages. Sci Rep 8:164. https://doi.org/10.1038/s41598-017-18533-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamal AHM, Fessler MB, Chowdhury SM (2018) Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS One 13:e0193104. https://doi.org/10.1371/journal.pone.0193104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim Y, Lee EJ, Jang HK et al (2016) Statin pretreatment inhibits the lipopolysaccharide-induced epithelial-mesenchymal transition via the downregulation of toll-like receptor 4 and nuclear factor-kappaB in human biliary epithelial cells. J Gastroenterol Hepatol 31:1220–1228. https://doi.org/10.1111/jgh.13230

    Article  CAS  PubMed  Google Scholar 

  14. Weischenfeldt J, Porse B (2008) Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc 2008:pdb.prot5080. https://doi.org/10.1101/pdb.prot5080

    Article  PubMed  Google Scholar 

  15. Udden SMN, Peng L, Gan J-L et al (2017) NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways. Cell Rep 19:2756–2770. https://doi.org/10.1016/j.celrep.2017.05.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566. https://doi.org/10.1038/nprot.2013.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34:374–378. https://doi.org/10.2144/03342mt01

    Article  CAS  PubMed  Google Scholar 

  18. Ellis CN, LaRocque RC, Uddin T et al (2015) Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 83:1089–1103. https://doi.org/10.1128/IAI.02765-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding support from grant UA5GM113216-01, NIGMS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiful M. Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakrabarty, J.K., Kamal, A.H.M., Shahinuzzaman, A.D.A., Chowdhury, S.M. (2020). Proteomics Network Analysis of Polarized Macrophages. In: Mishra, S. (eds) Immunometabolism. Methods in Molecular Biology, vol 2184. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0802-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0802-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0801-2

  • Online ISBN: 978-1-0716-0802-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics