Skip to main content

A Gene Expression Analysis of M1 and M2 Polarized Macrophages

  • Protocol
  • First Online:
Immunometabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2184))

Abstract

Macrophages are professional innate immune cells that are broadly disseminated throughout the body, shape various innate and adaptive immune responses, and play crucial roles in inflammation, homeostasis, wound healing, and tissue remodelling. According to their surrounding microenvironments, macrophages can differentiate themselves in different phenotypes. Over the last two decades, gene expression profiling has been used to decipher new transcripts associated with macrophage phenotypes. This chapter outlines protocols used to isolate and culture murine macrophages and how they can be “polarized” to obtain a specific phenotype. Furthermore, we describe a protocol for gene expression profiling using a quantitative real-time polymerase chain reaction (qPCR), a high-standard technology in the field of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeNardo DG, Ruffell B (2019) Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Okabe Y, Medzhitov R (2016) Tissue biology perspective on macrophages. Nat Immunol 17(1):9

    Article  CAS  PubMed  Google Scholar 

  4. Eissa N, Hussein H, Kermarrec L, Ali AY, Marshall A, Metz-Boutigue M-H et al (2018) Chromogranin-a regulates macrophage function and the apoptotic pathway in murine DSS colitis. J Mol Med 96(2):183–198

    Article  CAS  PubMed  Google Scholar 

  5. Eissa N, Hussein H, Kermarrec L, Elgazzar O, Metz-Boutigue M-H, Bernstein CN, Ghia J-E (2017) Chromofungin (CHR: CHGA47-66) is downregulated in persons with active ulcerative colitis and suppresses pro-inflammatory macrophage function through the inhibition of NF-κB signaling. Biochem Pharmacol 145:102–113

    Article  CAS  PubMed  Google Scholar 

  6. Eissa N, Hussein H, Kermarrec L, Grover J, Metz-Boutigue M-HE, Bernstein CN, Ghia J-E (2017) Chromofungin ameliorates the progression of colitis by regulating alternatively activated macrophages. Front Immunol 8:1131

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eissa N, Hussein H, Hendy GN, Bernstein CN, Ghia J-E (2018) Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol 152:315–326

    Article  CAS  PubMed  Google Scholar 

  8. Eissa N, Hussein H, Mesgna R, Bonin S, Hendy G, Metz-Boutigue M-H et al (2018) Catestatin regulates epithelial cell dynamics to improve intestinal inflammation. Vaccine 6(4):67

    Article  CAS  Google Scholar 

  9. Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:1

    Article  Google Scholar 

  10. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50(4):S1–S5

    Article  CAS  PubMed  Google Scholar 

  12. Gonçalves R, Mosser DM (2015) The isolation and characterization of murine macrophages. Curr Protoc Immunol 111(1):14.11.11–14.11.16

    Article  Google Scholar 

  13. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Current Protoc Immunol 83(1):14.11.11–14.11.14

    Article  Google Scholar 

  14. Cunnick J, Kaur P, Cho Y, Groffen J, Heisterkamp N (2006) Use of bone marrow-derived macrophages to model murine innate immune responses. J Immunol Methods 311(1–2):96–105

    Article  CAS  PubMed  Google Scholar 

  15. Rios FJ, Touyz RM, Montezano AC (2017) Isolation and differentiation of murine macrophages. Editors: Rhian M. Touyz Ernesto L. Schiffrin. Methods Mol Biol 1527:297–309. https://doi.org/10.1007/978-1-4939-6625-7_23

  16. De Nardo D, Kalvakolanu DV, Latz E (2018) Immortalization of murine bone marrow-derived macrophages. Editor: Germain Rousselet. Methods Mol Biol 1784:35–49. https://doi.org/10.1007/978-1-4939-7837-3_4

  17. McQuattie-Pimentel AC, Budinger GS, Ballinger MN (2018) Monocyte-derived alveolar macrophages: the dark side of lung repair? Am J Respir Cell Mol Biol 58:5–6; American Thoracic Society

    Article  CAS  PubMed  Google Scholar 

  18. Glass CK, Natoli G (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17(1):26

    Article  CAS  PubMed  Google Scholar 

  19. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(S1):S9–S17

    Article  CAS  PubMed  Google Scholar 

  20. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosser DM, Zhang X (2008) Activation of murine macrophages. Current Protoc Immunol 83(1):14.12.11–14.12.18

    Article  Google Scholar 

  22. Eissa N, Hussein H, Wang H, Rabbi MF, Bernstein CN, Ghia J-E (2016) Stability of reference genes for messenger RNA quantification by real-time PCR in mouse dextran sodium sulfate experimental colitis. PLoS One 11(5):e0156289

    Article  PubMed  PubMed Central  Google Scholar 

  23. Eissa N, Kermarrec L, Hussein H, Bernstein CN, Ghia J-E (2017) Appropriateness of reference genes for normalizing messenger RNA in mouse 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis using quantitative real time PCR. Sci Rep 7:42,427

    Article  CAS  Google Scholar 

  24. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  Google Scholar 

  26. Eissa N, Hussein H, Diarra A, Elgazzar O, Gounni AS, Bernstein CN, Ghia J-E (2019) Semaphorin 3E regulates apoptosis in the intestinal epithelium during the development of colitis. Biochem Pharmacol 166:264

    Article  CAS  PubMed  Google Scholar 

  27. Kermarrec L, Eissa N, Wang H, Kapoor K, Diarra A, Gounni AS et al (2019) Semaphorin 3E attenuates intestinal inflammation through the regulation of the communication between splenic CD11C+ and CD 4+ CD 25-T cells. Br J Pharmacol 176:1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is supported by grants from the Canada Foundation for Innovation, Crohn’s and Colitis Canada, Research Manitoba, the Children’s Hospital Research Institute of Manitoba, the Natural Sciences and Engineering Research Council, and finally the Canadian Institutes of Health Research, to Jean-Eric Ghia. Nour Eissa is supported by the Canadian Institutes of Health Research (CIHR) (Grant# 395678), Children’s Hospital Research Institute of Manitoba, Health Science Centre Foundation (HSCF)-Mindel, and the Tom Olenick Research Excellence Award in Immunology and the MITACS Accelerate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Eric Ghia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eissa, N., Hussein, H., Ghia, JE. (2020). A Gene Expression Analysis of M1 and M2 Polarized Macrophages. In: Mishra, S. (eds) Immunometabolism. Methods in Molecular Biology, vol 2184. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0802-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0802-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0801-2

  • Online ISBN: 978-1-0716-0802-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics