Skip to main content

Antigen Discovery in Bacterial Panproteomes

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

Abstract

There is still a lack of vaccines for many bacterial infections for which the best treatment option would be a prophylactic one. On the other hand, effectiveness has been questioned for some existing vaccines, prompting new developments. Therapeutic vaccines are also becoming a treatment option in specific cases where antibiotics tend to fail. In this scenario, refinement and extension of the classical reverse vaccinology approach is allowing scientists to find new and more effective antigens. In this chapter, we describe an in silico methodology that integrates pangenomic, immunoinformatic, structural, and evolutionary approaches for the screening of potential antigens in a given bacterial species. The strategy focuses on targeting relatively conserved epitopes in core proteins to design broadly cross-protective vaccines and avoid allele-specific immunity. The proposed methodological steps and computational tools can be easily implemented in a reverse vaccinology approach not only to identify new leads with strong immune response but also to develop diagnostic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R (2017) New generation vaccines, 4th edn. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  2. Bidmos FA, Siris S, Gladstone CA, Langford PR (2018) Bacterial vaccine antigen discovery in the reverse vaccinology 2.0 era: progress and challenges. Front Immunol 9:2315. https://doi.org/10.3389/fimmu.2018.02315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”. PNAS 102:13950–13955

    Google Scholar 

  4. Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  5. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450

    Article  CAS  PubMed  Google Scholar 

  6. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  7. Moriel DG, Scarselli M, Serino L, Mora M, Rappuoli R, Masignani V (2008) Genome-based vaccine development: a short cut for the future. Hum Vaccin 4:184–188

    Article  CAS  PubMed  Google Scholar 

  8. Moriel DG, Tan L, Goh KGK, Phan M-D, Ipe DS, Lo AW, Peters KM, Ulett GC, Beatson SA, Schembri MA (2016) A novel protective vaccine antigen from the core Escherichia coli genome. mSphere 1(6). https://doi.org/10.1128/mSphere.00326-16

  9. Moriel DG, Bertoldi I, Spagnuolo A et al (2010) Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. PNAS 107:9072–9077

    Google Scholar 

  10. Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A (2003) Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 71:4563–4579

    Google Scholar 

  11. Amela I, Cedano J, Querol E (2007) Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One 2:e512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Barh D, Tiwari S, Jain N, Ali A, Santos AR, Misra AN, Azevedo V, Kumar A (2011) In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 72:162–177

    Article  CAS  Google Scholar 

  13. Rappuoli R, Pizza M, Masignani V, Vadivelu K (2018) Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Exp Rev Vaccin 17:1111–1121

    Article  CAS  Google Scholar 

  14. Giuliani MM, Adu-Bobie J, Comanducci M et al (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomar N, De RK (2014) Immunoinformatics: a brief review. Methods Mol Biol 1184:23–55

    Article  PubMed  CAS  Google Scholar 

  16. Capelli R, Peri C, Villa R et al (2018) BPSL1626: reverse and structural vaccinology reveal a novel candidate for vaccine design against Burkholderia pseudomallei. Antibodies 7:26

    Google Scholar 

  17. Pajon R, Yero D, Niebla O et al (2009) Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes. Vaccine 28:532–541

    Article  CAS  PubMed  Google Scholar 

  18. He Y, Xiang Z, Mobley HLT (2010) Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol 2010:297505. https://doi.org/10.1155/2010/297505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naz K, Naz A, Ashraf ST, Rizwan M, Ahmad J, Baumbach J, Ali A (2019) PanRV: pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinformatics 20:123. https://doi.org/10.1186/s12859-019-2713-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Solanki V, Tiwari V (2018) Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 8:9044

    Google Scholar 

  21. Jaiswal V, Chanumolu SK, Gupta A, Chauhan RS, Rout C (2013) Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinformatics 14:211

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zvi A, Rotem S, Bar-Haim E, Cohen O, Shafferman A (2011) Whole-genome immunoinformatic analysis of F. tularensis: predicted CTL epitopes clustered in hotspots are prone to elicit a T-cell response. PLoS One 6:e20050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Solanki V, Tiwari M, Tiwari V (2019) Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep 9:1. https://doi.org/10.1038/s41598-019-41496-4

  24. Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS (2017) Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform 18:467–478

    CAS  PubMed  Google Scholar 

  25. Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA (2017) Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res 2017:2680160. https://doi.org/10.1155/2017/2680160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A (2017) The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol 8:278. https://doi.org/10.3389/fimmu.2017.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343

    Article  CAS  PubMed  Google Scholar 

  28. Cozzi R, Scarselli M, Ferlenghi I (2013) Structural vaccinology: a three-dimensional view for vaccine development. Curr Top Med Chem 13:2629–2637

    Article  PubMed  CAS  Google Scholar 

  29. Anasir MI, Poh CL (2019) Structural vaccinology for viral vaccine design. Front Microbiol 10:738. https://doi.org/10.3389/fmicb.2019.00738

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nuccitelli A, Rinaudo CD, Brogioni B et al (2013) Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of group B streptococcus. PLoS Comput Biol 9:e1003115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capelli R, Marchetti F, Tiana G, Colombo G (2017) SAGE: a fast computational tool for linear epitope grafting onto a foreign protein scaffold. J Chem Inf Model 57:6–10

    Article  CAS  PubMed  Google Scholar 

  32. Raeven RHM, van Riet E, Meiring HD, Metz B, Kersten GFA (2019) Systems vaccinology and big data in the vaccine development chain. Immunology 156:33–46

    Article  CAS  PubMed  Google Scholar 

  33. Oberg AL, Kennedy RB, Li P, Ovsyannikova IG, Poland GA (2011) Systems biology approaches to new vaccine development. Curr Opin Immunol 23:436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Groot AS, Ardito M, Moise L, Gustafson EA, Spero D, Tejada G, Martin W (2011) Immunogenic consensus sequence T helper epitopes for a Pan-Burkholderia biodefense vaccine. Immunome Res 7(2). https://doi.org/10.4172/1745-7580.1000043

  35. Goodswen SJ, Kennedy PJ, Ellis JT (2014) Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores. PLoS One 9:e115745. https://doi.org/10.1371/journal.pone.0115745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seib KL, Zhao X, Rappuoli R (2012) Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect 18(Suppl 5):109–116

    Article  CAS  PubMed  Google Scholar 

  37. Goodswen SJ, Kennedy PJ, Ellis JT (2018) A gene-based positive selection detection approach to identify vaccine candidates using Toxoplasma gondii as a test case protozoan pathogen. Front Genet 9:332. https://doi.org/10.3389/fgene.2018.00332

  38. Gilchuk P, Hill TM, Wilson JT, Joyce S (2015) Discovering protective CD8 T cell epitopes—no single immunologic property predicts it! Curr Opin Immunol 34:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akram A, Inman RD (2012) Immunodominance: a pivotal principle in host response to viral infections. Clin Immunol 143:99–115

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues MM, Ersching J (2015) Neglected tropical diseases, bioinformatics, and vaccines. J Infect Dis 211:175–177

    Article  PubMed  Google Scholar 

  41. Haft DH, DiCuccio M, Badretdin A et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860

    Article  CAS  PubMed  Google Scholar 

  42. Harrison PW, Alako B, Amid C et al (2019) The european nucleotide archive in 2018. Nucleic Acids Res 47:D84–D88

    Article  CAS  PubMed  Google Scholar 

  43. Wattam AR, Davis JJ, Assaf R et al (2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45:D535–D542

    Article  CAS  PubMed  Google Scholar 

  44. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics Chapter 6:Unit 6.12.1-19

    PubMed  Google Scholar 

  46. Train C-M, Glover NM, Gonnet GH, Altenhoff AM, Dessimoz C (2017) Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. Bioinformatics 33:i75–i82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Callister SJ, McCue LA, Turse JE, Monroe ME, Auberry KJ, Smith RD, Adkins JN, Lipton MS (2008) Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 3:e1542. https://doi.org/10.1371/journal.pone.0001542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169

    Article  CAS  Google Scholar 

  49. GenBank Sample Record. https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html. Accessed 27 Jun 2019

  50. Yu NY, Wagner JR, Laird MR et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  52. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  53. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30:2592–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dhanda SK, Mahajan S, Paul S et al (2019) IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res 47:W502. https://doi.org/10.1093/nar/gkz452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M (2017) NetMHCpan-4.0: improved peptide-MHC class i interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:3360–3368

    Article  CAS  PubMed  Google Scholar 

  57. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, Sette A, Peters B, Nielsen M (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64:177–186

    Article  CAS  PubMed  Google Scholar 

  59. Peri C, Solé OC, Corrada D, Gori A, Daura X, Colombo G (2015) Prediction of antigenic B and T cell epitopes via energy decomposition analysis: description of the web-based prediction tool BEPPE. Methods Mol Biol 1348:13–22

    Article  CAS  PubMed  Google Scholar 

  60. Fiorucci S, Zacharias M (2010) Prediction of protein-protein interaction sites using electrostatic desolvation profiles. Biophys J 98:1921–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  62. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 36:W35–W41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  65. Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724

    Article  CAS  PubMed  Google Scholar 

  66. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  PubMed  Google Scholar 

  67. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35:773. https://doi.org/10.1093/molbev/msx335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baum BR (1989) PHYLIP: phylogeny inference package. Version 3.2. Joel Felsenstein. Q Rev Biol 64:539–541

    Article  Google Scholar 

  69. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  70. Kane TL, Carothers KE, Lee SW (2018) Virulence factor targeting of the bacterial pathogen Staphylococcus aureus for vaccine and therapeutics. Curr Drug Targets 19:111–127

    Google Scholar 

  71. The Gene Ontology Consortium (2019) The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47:D330-D338

    Google Scholar 

  72. El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  73. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    Article  CAS  PubMed  Google Scholar 

  74. Carroll MC (2008) Complement and Humoral Immunity. Vaccine 26:I28–I33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 7:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gonzalez-Galarza FF, McCabe A, Melo Dos Santos EJ, Takeshita L, Ghattaoraya G, Jones AR, Middleton D (2018) Allele frequency net database. Methods Mol Biol 1802:49–62

    Article  CAS  PubMed  Google Scholar 

  77. HLA allele frequencies and reference sets with maximal population coverage. IEDB Solutions Center. http://help.iedb.org/hc/en-us/articles/114094151851-HLA-allele-frequencies-and-reference-sets-with-maximal-population-coverage. Accessed 26 Jun 2019

  78. Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A (2011) Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 63:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weiskopf D, Angelo MA, de Azeredo EL et al (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc Natl Acad Sci U S A 110:E2046–E2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lassaux P, Peri C, Ferrer-Navarro M et al (2013) A structure-based strategy for epitope discovery in Burkholderia pseudomallei OppA antigen. Structure 21:167–175

    Google Scholar 

  81. Gourlay LJ, Peri C, Ferrer-Navarro M et al (2013) Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology. Chem Biol 20:1147–1156

    Google Scholar 

  82. Gourlay LJ, Thomas RJ, Peri C et al (2015) From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK. FEBS J 282:1319–1333

    Google Scholar 

  83. Gaudesi D, Peri C, Quilici G et al (2015) Structure-based design of a B cell antigen from B. pseudomallei. ACS Chem Biol 10:803–812

    Google Scholar 

  84. van Gunsteren WF, Bakowies D, Baron R et al (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed Eng 45:4064–4092

    Article  CAS  Google Scholar 

  85. Telford JL (2008) Bacterial genome variability and its impact on vaccine design. Cell Host Microbe 3:408–416

    Article  CAS  PubMed  Google Scholar 

  86. Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, Brusic V, Tan TW, Thomas August J (2017) Analysis of viral diversity for vaccine target discovery. BMC Med Genet 10:78

    Google Scholar 

  87. Graves CJ, Ros VID, Stevenson B, Sniegowski PD, Brisson D (2013) Natural selection promotes antigenic evolvability. PLoS Pathog 9:e1003766. https://doi.org/10.1371/journal.ppat.1003766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu Z, Chen H, Zhou R (2011) Genome-wide evidence for positive selection and recombination in Actinobacillus pleuropneumoniae. BMC Evol Biol 11:203

    Google Scholar 

  89. Cao P, Guo D, Liu J, Jiang Q, Xu Z, Qu L (2017) Genome-wide analyses reveal genes subject to positive selection in Pasteurella multocida. Front Microbiol 8:961. https://doi.org/10.3389/fmicb.2017.00961

  90. Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R (2007) Genes under positive selection in Escherichia coli. Genome Res 17:1336–1343

    Google Scholar 

  91. Nandi T, Ong C, Singh AP et al (2010) A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathog 6:e1000845

    Google Scholar 

  92. O’Connor DH, McDermott AB, Krebs KC et al (2004) A dominant role for CD8+-T-lymphocyte selection in simian immunodeficiency virus sequence variation. J Virol 78:14012–14022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. de Oliveira T, Salemi M, Gordon M, Vandamme A-M, van Rensburg EJ, Engelbrecht S, Coovadia HM, Cassol S (2004) Mapping sites of positive selection and amino acid diversification in the HIV genome: an alternative approach to vaccine design? Genetics 167:1047–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  95. Kosakovsky Pon S, Poon A, Frost S (2009) Estimating selection pressures on alignments of coding sequences. In: The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing, 2nd edn. Cambridge University Press, New York, NY, pp 419–452

    Google Scholar 

  96. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098

    Article  PubMed  CAS  Google Scholar 

  98. Dobson R, Stockdale C, Lapsley C, Wilkes J, McCulloch R (2011) Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation. Mol Microbiol 81:434–456

    Google Scholar 

  99. Holden NJ, Uhlin BE, Gally DL (2001) PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 42:319–330

    Google Scholar 

  100. Tsuru T, Kobayashi I (2008) Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 25:2457–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rappuoli R (2011) The challenge of developing universal vaccines. F1000 Med Rep 3:16. https://doi.org/10.3410/M3-16

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bambini S, Piet J, Muzzi A et al (2013) An analysis of the sequence variability of meningococcal fHbp, NadA and NHBA over a 50-year period in the Netherlands. PLoS One 8:e65043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wachter J, Hill S (2016) Positive selection pressure drives variation on the surface-exposed variable proteins of the pathogenic neisseria. PLoS One 11:e0161348. https://doi.org/10.1371/journal.pone.0161348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Counoupas C, Pinto R, Nagalingam G, Hill-Cawthorne GA, Feng CG, Britton WJ, Triccas JA (2016) Mycobacterium tuberculosis components expressed during chronic infection of the lung contribute to long-term control of pulmonary tuberculosis in mice. NPJ Vaccines 1:16012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Daura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yero, D., Conchillo-Solé, O., Daura, X. (2021). Antigen Discovery in Bacterial Panproteomes. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics