Skip to main content

Thin-Film Freeze-Drying Is a Viable Method to Convert Vaccines Containing Aluminum Salts from Liquid to Dry Powder

  • Protocol
  • First Online:
Vaccine Delivery Technology

Abstract

Aluminum salts are used as an adjuvant in many human and veterinary vaccines. However, aluminum salt-adjuvanted vaccines are sensitive to temperature change and must be stored at 2–8 °C. Inadvertently exposing them to slow freezing temperatures can cause irreversible aggregation of aluminum salt microparticles and loss of potency and/or immunogenicity of the vaccines. There have been efforts to overcome this limitation by either adding stabilizing agents to the liquid vaccine or converting the vaccine from a liquid to a dry powder. Thin-film freeze-drying (TFFD) has proven to be an effective process to convert aluminum salt-adjuvanted vaccines from liquid to dry powder without causing particle aggregation or loss of immunogenicity upon reconstitution. This chapter provides a review of the TFFD process and examples for preparing stable aluminum salt-adjuvanted vaccine dry powders using TFFD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kristensen D, Chen D, Cummings R (2011) Vaccine stabilization: research, commercialization, and potential impact. Vaccine 29(41):7122–7124

    Article  CAS  Google Scholar 

  2. Clausi A, Cummiskey J, Merkley S, Carpenter JF, Braun LJ, Randolph TW (2008) Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine. J Pharm Sci 97(12):5252–5262

    Article  CAS  Google Scholar 

  3. Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B (2019) Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 37(24):3167–3178

    Article  CAS  Google Scholar 

  4. Chen D, Kristensen D (2009) Opportunities and challenges of developing thermostable vaccines. Expert Rev Vaccines 8(5):547–557

    Article  CAS  Google Scholar 

  5. World Health Organization (2006) In: Galazka AM (ed) Temperature sensitivity of vaccines. World Health Organization, Geneva

    Google Scholar 

  6. Thakkar SG, Cui Z (2017) Methods to prepare aluminum salt-adjuvanted vaccines. In: Vaccine adjuvants, Methods in molecular biology, vol 1494. Springer, New York, pp 181–199

    Chapter  Google Scholar 

  7. Zapata MI, Peck GE, Hem SL, White JL, Feldkamp JR (1984) Mechanism of freeze-thaw instability of aluminum hydroxycarbonate and magnesium hydroxide gels. J Pharm Sci 73(1):3–8

    Article  CAS  Google Scholar 

  8. Maa YF, Zhao L, Payne LG, Chen D (2003) Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application. J Pharm Sci 92(2):319–332

    Article  CAS  Google Scholar 

  9. Diminsky D, Moav N, Gorecki M, Barenholz Y (1999) Physical, chemical and immunological stability of CHO-derived hepatitis B surface antigen (HBsAg) particles. Vaccine 18(1–2):3–17

    Article  CAS  Google Scholar 

  10. Boros CA, Hanlon M, Gold M, Roberton D (2001) Storage at −3 °C for 24 h alters the immunogenicity of pertussis vaccines. Vaccine 19(25–26):3537–3542

    Article  CAS  Google Scholar 

  11. Matthias DM, Robertson J, Garrison MM, Newland S, Nelson C (2007) Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine 25(20):3980–3986

    Article  CAS  Google Scholar 

  12. Nygaard UC, Samuelsen M, Aase A, Løvik M (2004) The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci 82(2):515–524

    Article  CAS  Google Scholar 

  13. Davaalkham D, Ojima T, Wiersma S, Lkhagvasuren T, Nymadawa P, Uehara R, Watanabe M, Oki I, Nakamura Y (2007) Administration of hepatitis B vaccine in winter as a significant predictor of the poor effectiveness of vaccination in rural Mongolia: evidence from a nationwide survey. J Epidemiol Community Health 61(7):578–584

    Article  Google Scholar 

  14. Menon P, Sahai G, Joshi V, Murthy R, Boparai M, Thomas A (1976) Field trial on frozen and thawed tetanus toxoid. Indian J Med Res 64(1):25–32

    CAS  PubMed  Google Scholar 

  15. Wirkas T, Toikilik S, Miller N, Morgan C, Clements CJ (2007) A vaccine cold chain freezing study in PNG highlights technology needs for hot climate countries. Vaccine 25(4):691–697

    Article  Google Scholar 

  16. Lydon P, Zipursky S, Tevi-Benissan C, Djingarey MH, Gbedonou P, Youssouf BO, Zaffran M (2013) Economic benefits of keeping vaccines at ambient temperature during mass vaccination: the case of meningitis A vaccine in Chad. Bull World Health Organ 92(2):86–92

    Article  Google Scholar 

  17. Nelson CM, Wibisono H, Purwanto H, Mansyur I, Moniaga V, Widjaya A (2004) Hepatitis B vaccine freezing in the Indonesian cold chain: evidence and solutions. Bull World Health Organ 82:99–105

    PubMed  PubMed Central  Google Scholar 

  18. Edstam JS, Dulmaa N, Tsendjav O, Dambasuren B, Densmaa B (2004) Exposure of hepatitis B vaccine to freezing temperatures during transport to rural health centers in Mongolia. Prev Med 39(2):384–388

    Article  Google Scholar 

  19. Braun LJ, Tyagi A, Perkins S, Carpenter J, Sylvester D, Guy M, Kristensen D, Chen D (2009) Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants. Vaccine 27(1):72–79

    Article  CAS  Google Scholar 

  20. Overhoff KA, Johnston KP, Tam J, Engstrom J, Williams R III (2009) Use of thin film freezing to enable drug delivery: a review. J Drug Deliv Sci Technol 19(2):89–98

    Article  CAS  Google Scholar 

  21. Clausi AL, Morin A, Carpenter JF, Randolph TW (2009) Influence of protein conformation and adjuvant aggregation on the effectiveness of aluminum hydroxide adjuvant in a model alkaline phosphatase vaccine. J Pharm Sci 98(1):114–121

    Article  CAS  Google Scholar 

  22. Clausi AL, Merkley SA, Carpenter JF, Randolph TW (2008) Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J Pharm Sci 97(6):2049–2061

    Article  CAS  Google Scholar 

  23. Cox JC (1999) Spray dried vaccine preparation comprising aluminium adsorbed immunogens. US 5,902,565, 11 May 1999

    Google Scholar 

  24. Li X, Thakkar SG, Ruwona TB, Williams RO 3rd, Cui Z (2015) A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J Control Release 204:38–50

    Article  CAS  Google Scholar 

  25. Thakkar SG, Ruwona TB, Williams RO, Cui Z (2017) The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures. Hum Vaccin Immunother 13(4):936–946

    Article  Google Scholar 

  26. Overhoff KA, Engstrom JD, Chen B, Scherzer BD, Milner TE, Johnston KP, Williams RO III (2007) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65(1):57–67

    Article  CAS  Google Scholar 

  27. Engstrom JD, Simpson DT, Cloonan C, Lai ES, Williams RO 3rd, Barrie Kitto G, Johnston KP (2007) Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. Eur J Pharm Biopharm 65(2):163–174

    Article  CAS  Google Scholar 

  28. Engstrom JD, Lai ES, Ludher BS, Chen B, Milner TE, Williams RO, Kitto GB, Johnston KP (2008) Formation of stable submicron protein particles by thin film freezing. Pharm Res 25(6):1334–1346

    Article  CAS  Google Scholar 

  29. Williams RO III, Watts AB, Miller DA (2016) Formulating poorly water soluble drugs, vol 22. Springer, New York

    Book  Google Scholar 

  30. Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil®). Drugs 66(9):1263–1271

    Article  Google Scholar 

  31. Keating GM, Noble S (2003) Recombinant hepatitis B vaccine (Engerix-B®). Drugs 63(10):1021–1051

    Article  CAS  Google Scholar 

  32. Xu H, Ruwona TB, Thakkar SG, Chen Y, Zeng M, Cui Z (2017) Nasal aluminum (oxy) hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccin Immunother 13(11):2688–2694

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that research supporting this work was funded by a sponsored research agreement from TFF Pharmaceuticals, Inc. (Austin, TX). R.F.A. was supported, in part, by a scholarship from the King Saud University. C.M. was supported, in part, by TFF Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alzhrani, R.F., Xu, H., Moon, C., Suggs, L.J., Williams, R.O., Cui, Z. (2021). Thin-Film Freeze-Drying Is a Viable Method to Convert Vaccines Containing Aluminum Salts from Liquid to Dry Powder. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics