Skip to main content

Production of Baculovirus and Stem Cells for Baculovirus-Mediated Gene Transfer into Human Mesenchymal Stem Cells

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

Abstract

The discovery of the genome-editing tool CRISPR-Cas9 is revolutionizing the world of gene therapy and will extend the gene therapy product pipeline. While applying gene therapy products, the main difficulty is an efficient and effective transfer of the nucleic acids carrying the relevant information to their target destination, the nucleus of the cells. Baculoviruses have shown to be very suitable transport vehicles for this task due to, inter alia, their ability to transduce mammalian/human cells without being pathogenic. This property allows the usage of baculovirus-transduced cells as cell therapy products, thus, combining the advantages of gene and cell therapy. To make such pharmaceuticals available for patients, a successful production and purification is necessary. In this chapter, we describe the generation of a pseudotyped baculovirus vector, followed by downstream processing using depth and tangential-flow filtration. This vector is used subsequently to transduce human mesenchymal stem cells. The production of the cells and the subsequent transduction process are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginn SL, Amaya AK, Alexander IE et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015. https://doi.org/10.1002/jgm.3015

    Article  PubMed  Google Scholar 

  2. Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169. https://doi.org/10.1016/j.gene.2013.03.137

    Article  CAS  PubMed  Google Scholar 

  3. Gardlík R, Pálffy R, Hodosy J et al (2005) Vectors and delivery systems in gene therapy. Med Sci Monit 11(4):RA110–RA121

    PubMed  Google Scholar 

  4. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1–2):70–83. https://doi.org/10.1016/j.ijpharm.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  5. Somia N, Verma IM (2000) Gene therapy: trials and tribulations. Nat Rev Genet 1(2):91–99. https://doi.org/10.1038/35038533

    Article  CAS  PubMed  Google Scholar 

  6. Wold WSM, Toth K (2013) Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 13(6):421–433

    Article  CAS  Google Scholar 

  7. Naso MF, Tomkowicz B, Perry WL et al (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31(4):317–334. https://doi.org/10.1007/s40259-017-0234-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yi Y, Jong Noh M, Hee Lee K (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11(3):218–228. https://doi.org/10.2174/156652311795684740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milone MC, O’Doherty U (2018) Clinical use of lentiviral vectors. Leukemia 32(7):1529–1541. https://doi.org/10.1038/s41375-018-0106-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merten O-W, Gaillet B (2016) Viral vectors for gene therapy and gene modification approaches. Biochem Eng J 108:98–115. https://doi.org/10.1016/j.bej.2015.09.005

    Article  CAS  Google Scholar 

  11. Ayres MD, Howard SC, Kuzio J et al (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202(2):586–605. https://doi.org/10.1006/viro.1994.1380

    Article  CAS  PubMed  Google Scholar 

  12. Vail PV, Sutter G, Jay DL et al (1971) Reciprocal infectivity of nuclear polyhedrosis viruses of the cabbage looper and alfalfa looper. J Invertebr Pathol 17(3):383–388. https://doi.org/10.1016/0022-2011(71)90013-9

    Article  Google Scholar 

  13. Summers MD (2006) Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. In: Bonning BC (ed) Insect viruses: biotechnological applications, vol 68. Elsevier Academic Press, Amsterdam, pp 3–73

    Chapter  Google Scholar 

  14. Cox MMJ, Hashimoto Y (2011) A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 107(Suppl):S31–S41. https://doi.org/10.1016/j.jip.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  15. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10(7):1063–1081. https://doi.org/10.1586/erv.11.24

    Article  CAS  PubMed  Google Scholar 

  16. Lin S-Y, Chung Y-C, Hu Y-C (2014) Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 13(12):1501–1521. https://doi.org/10.1586/14760584.2014.951637

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann C, Sandig V, Jennings G et al (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92(22):10099–10103. https://doi.org/10.1073/pnas.92.22.10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen C-Y, Lin C-Y, Chen G-Y et al (2011) Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 29(6):618–631. https://doi.org/10.1016/j.biotechadv.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng T, Xu C-Y, Wang Y-B et al (2004) A rapid and efficient method to express target genes in mammalian cells by baculovirus. World J Gastroenterol 10(11):1612–1618. https://doi.org/10.3748/wjg.v10.i11.1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Condreay JP, Witherspoon SM, Clay WC et al (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96(1):127–132. https://doi.org/10.1073/pnas.96.1.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kost TA, Condreay JP (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20(4):173–180

    Article  CAS  Google Scholar 

  22. Hu Y-C (2008) Baculoviral vectors for gene delivery: a review. Curr Gene Ther 8(1):54–65

    Article  CAS  Google Scholar 

  23. Cheshenko N, Krougliak N, Eisensmith RC et al (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 8(11):846–854. https://doi.org/10.1038/sj.gt.3301459

    Article  CAS  PubMed  Google Scholar 

  24. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23(5):567–575. https://doi.org/10.1038/nbt1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang K-C, Wu J-C, Chung Y-C et al (2005) Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng 89(4):464–473. https://doi.org/10.1002/bit.20385

    Article  CAS  PubMed  Google Scholar 

  26. Merrihew RV, Clay WC, Condreay JP et al (2001) Chromosomal integration of transduced recombinant baculovirus DNA in mammalian cells. J Virol 75(2):903–909. https://doi.org/10.1128/JVI.75.2.903-909.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo W-Y, Lin S-Y, Lo K-W et al (2013) Adaptive immune responses elicited by baculovirus and impacts on subsequent transgene expression in vivo. J Virol 87(9):4965–4973. https://doi.org/10.1128/JVI.03510-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strauss R, Hüser A, Ni S et al (2007) Baculovirus-based vaccination vectors allow for efficient induction of immune responses against Plasmodium falciparum circumsporozoite protein. Mol Ther 15(1):193–202. https://doi.org/10.1038/sj.mt.6300008

    Article  CAS  PubMed  Google Scholar 

  29. Murhammer DW (ed) (2007) Baculovirus and insect cell expression protocols, Methods in molecular biology, vol 388, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  30. Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22(1):319–325. https://doi.org/10.1021/bp050218v

    Article  CAS  PubMed  Google Scholar 

  31. Pan Y, Zhao Q, Fang L et al (2009) Efficient gene delivery into mammalian cells by recombinant baculovirus containing a hybrid cytomegalovirus promoter/Semliki Forest virus replicon. J Gene Med 11(11):1030–1038. https://doi.org/10.1002/jgm.1390

    Article  CAS  PubMed  Google Scholar 

  32. Tani H, Nishijima M, Ushijima H et al (2001) Characterization of cell-surface determinants important for baculovirus infection. Virology 279(1):343–353. https://doi.org/10.1006/viro.2000.0699

    Article  CAS  PubMed  Google Scholar 

  33. Mansouri M, Bellon-Echeverria I, Rizk A et al (2016) Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun 7:11529. https://doi.org/10.1038/ncomms11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barsoum J, Brown R, McKee M et al (1997) Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 8(17):2011–2018. https://doi.org/10.1089/hum.1997.8.17-2011

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Yang Y, Wang S (2005) Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp Physiol 90(1):39–44. https://doi.org/10.1113/expphysiol.2004.028217

    Article  CAS  PubMed  Google Scholar 

  36. Wang CY, Wang S (2006) Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 13(20):1447–1456. https://doi.org/10.1038/sj.gt.3302771

    Article  CAS  PubMed  Google Scholar 

  37. Boyce FM, Bucher NL (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93(6):2348–2352. https://doi.org/10.1073/pnas.93.6.2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shoji I, Aizaki H, Tani H et al (1997) Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78(Pt 10):2657–2664. https://doi.org/10.1099/0022-1317-78-10-2657

    Article  CAS  PubMed  Google Scholar 

  39. Mähönen AJ, Airenne KJ, Purola S et al (2007) Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 131(1):1–8. https://doi.org/10.1016/j.jbiotec.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  40. Ang WX, Zhao Y, Kwang T et al (2016) Local immune stimulation by Intravesical instillation of baculovirus to enable bladder cancer therapy. Sci Rep 6:27455. https://doi.org/10.1038/srep27455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lykhova AA, Kudryavets YI, Strokovska LI et al (2015) Suppression of proliferation, tumorigenicity and metastasis of lung cancer cells after their transduction by interferon-beta gene in baculovirus vector. Cytokine 71(2):318–326. https://doi.org/10.1016/j.cyto.2014.10.029

    Article  CAS  PubMed  Google Scholar 

  42. Swift SL, Rivera GC, Dussupt V et al (2013) Evaluating baculovirus as a vector for human prostate cancer gene therapy. PLoS One 8(6):e65557. https://doi.org/10.1371/journal.pone.0065557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang C-Y, Li F, Yang Y et al (2006) Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Res 66(11):5798–5806. https://doi.org/10.1158/0008-5472.CAN-05-4514

    Article  CAS  PubMed  Google Scholar 

  44. Lin C-Y, Chang Y-H, Kao C-Y et al (2012) Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 33(14):3682–3692. https://doi.org/10.1016/j.biomaterials.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  45. Lin C-Y, Lin K-J, Kao C-Y et al (2011) The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32(27):6505–6514. https://doi.org/10.1016/j.biomaterials.2011.05.059

    Article  CAS  PubMed  Google Scholar 

  46. Lin C-Y, Lin K-J, Li K-C et al (2012) Immune responses during healing of massive segmental femoral bone defects mediated by hybrid baculovirus-engineered ASCs. Biomaterials 33(30):7422–7434. https://doi.org/10.1016/j.biomaterials.2012.06.083

    Article  CAS  PubMed  Google Scholar 

  47. Lu C-H, Yeh T-S, Yeh C-L et al (2014) Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 22(1):186–195. https://doi.org/10.1038/mt.2013.165

    Article  CAS  PubMed  Google Scholar 

  48. Hu Y-C, Yao K, Wu T-Y (2008) Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 7(3):363–371. https://doi.org/10.1586/14760584.7.3.363

    Article  CAS  PubMed  Google Scholar 

  49. Lu H-Y, Chen Y-H, Liu H-J (2012) Baculovirus as a vaccine vector. Bioengineered 3(5):271–274. https://doi.org/10.4161/bioe.20679

    Article  PubMed  PubMed Central  Google Scholar 

  50. Madhan S, Prabakaran M, Kwang J (2010) Baculovirus as vaccine vectors. Curr Gene Ther 10(3):201–213

    Article  CAS  Google Scholar 

  51. Yong S-B, Chung JY, Song Y et al (2018) Recent challenges and advances in genetically-engineered cell therapy. J Pharm Investig 48(2):199–208. https://doi.org/10.1007/s40005-017-0381-1

    Article  CAS  PubMed  Google Scholar 

  52. Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917. https://doi.org/10.1155/2015/394917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37(7):855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brown C, McKee C, Bakshi S et al (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13(9):1738–1755. https://doi.org/10.1002/term.2914

    Article  CAS  PubMed  Google Scholar 

  55. Yu Y, Liao L, Shao B et al (2017) Knockdown of microRNA let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy. Mol Ther 25(2):480–493. https://doi.org/10.1016/j.ymthe.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  56. Huang B, Jiang X-C, Zhang T-Y et al (2017) Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm 531(1):90–100. https://doi.org/10.1016/j.ijpharm.2017.08.073

    Article  CAS  PubMed  Google Scholar 

  57. Balmayor ER, Geiger JP, Koch C et al (2017) Modified mRNA for BMP-2 in combination with biomaterials serves as a transcript-activated matrix for effectively inducing osteogenic pathways in stem cells. Stem Cells Dev 26(1):25–34. https://doi.org/10.1089/scd.2016.0171

    Article  CAS  PubMed  Google Scholar 

  58. Sprick G, Weidner T, Salzig D et al (2017) Baculovirus-induced recombinant protein expression in human mesenchymal stromal stem cells: a promoter study. N Biotechnol 39(Pt B):161–166. https://doi.org/10.1016/j.nbt.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  59. Brooks AR, Harkins RN, Wang P et al (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6(4):395–404. https://doi.org/10.1002/jgm.516

    Article  CAS  PubMed  Google Scholar 

  60. Meilinger D, Fellinger K, Bultmann S et al (2009) Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells. EMBO Rep 10(11):1259–1264. https://doi.org/10.1038/embor.2009.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang J, Zhu L, Chen X et al (2019) Human bone marrow mesenchymal stem cells functionalized by hybrid baculovirus-adeno-associated viral vectors for targeting hypopharyngeal carcinoma. Stem Cells Dev 28(8):543–553. https://doi.org/10.1089/scd.2018.0252

    Article  CAS  PubMed  Google Scholar 

  62. Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F et al (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30(1):1–18. https://doi.org/10.1002/btpr.1842

    Article  CAS  PubMed  Google Scholar 

  63. Maranga L, Cruz PE, Aunins JG et al (2002) Production of core and virus-like particles with baculovirus infected insect cells. In: Schügerl K, Aunins JG (eds) Tools and applications of biochemical engineering science, vol 74. Springer, Berlin, pp 183–206

    Chapter  Google Scholar 

  64. Pijlman GP, van den Born E, Martens DE et al (2001) Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283(1):132–138. https://doi.org/10.1006/viro.2001.0854

    Article  CAS  PubMed  Google Scholar 

  65. Aucoin MG, Mena JA, Kamen AA (2010) Bioprocessing of baculovirus vectors: a review. Curr Gene Ther 10(3):174–186

    Article  CAS  Google Scholar 

  66. Klöppinger M, Fertig G, Fraune E et al (1990) Multistage production of Autographa californica nuclear polyhedrosis virus in insect cell cultures. Cytotechnology 4(3):271–278. https://doi.org/10.1007/bf00563787

    Article  PubMed  Google Scholar 

  67. Zwart MP, Erro E, van Oers MM et al (2008) Low multiplicity of infection in vivo results in purifying selection against baculovirus deletion mutants. J Gen Virol 89(Pt 5):1220–1224. https://doi.org/10.1099/vir.0.83645-0

    Article  CAS  PubMed  Google Scholar 

  68. Wickham TJ, Davis T, Granados RR et al (1991) Baculovirus defective interfering particles are responsible for variations in recombinant protein production as a function of multiplicity of infection. Biotechnol Lett 13(7):483–488. https://doi.org/10.1007/BF01049204

    Article  Google Scholar 

  69. Kwang TW, Zeng X, Wang S (2016) Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 3:15050. https://doi.org/10.1038/mtm.2015.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolff MW, Reichl U (2011) Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines 10(10):1451–1475. https://doi.org/10.1586/erv.11.111

    Article  Google Scholar 

  71. Vicente T, Peixoto C, Carrondo MJT et al (2009) Purification of recombinant baculoviruses for gene therapy using membrane processes. Gene Ther 16(6):766–775. https://doi.org/10.1038/gt.2009.33

    Article  CAS  PubMed  Google Scholar 

  72. Vicente T, Roldão A, Peixoto C et al (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107(Suppl):S42–S48. https://doi.org/10.1016/j.jip.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ungerechts G, Bossow S, Leuchs B et al (2016) Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther Methods Clin Dev 3:16018. https://doi.org/10.1038/mtm.2016.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. EMA (1997) CPMP position statement on DNAa nd host cell proteins (HCP) impurities, routine testing versus validation studies

    Google Scholar 

  75. Champion K, Madden H, Dougherty J et al (2005) Defining your product profile and maintaining control over it, part 2: challenges of monitoring host cell protein impurities

    Google Scholar 

  76. Wright JF (2014) Product-related impurities in clinical-grade recombinant AAV vectors: characterization and risk assessment. Biomedicine 2(1):80–97. https://doi.org/10.3390/biomedicines2010080

    Article  Google Scholar 

  77. Kramberger P, Urbas L, Štrancar A (2015) Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum Vaccin Immunother 11(4):1010–1021. https://doi.org/10.1080/21645515.2015.1009817

    Article  PubMed  PubMed Central  Google Scholar 

  78. FDA (2018) Chemistry, Manufacturing, and Control (CMC) information for human gene therapy Investigational New Drug Applications (INDs): Draft Guidance for Industry

    Google Scholar 

  79. Roldão A, Vicente T, Peixoto C et al (2011) Quality control and analytical methods for baculovirus-based products. J Invertebr Pathol 107(Suppl):S94–S105. https://doi.org/10.1016/j.jip.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  80. Zitzmann J, Sprick G, Weidner T et al (2017) Process optimization for recombinant protein expression in insect cells. In: Gowder SJT (ed) New insights into cell culture technology. InTechOpen, Rijeka, Croatia

    Google Scholar 

  81. Hoffmann D, Leber J, Loewe D et al (2019) Purification of new biologicals using membrane-based processes. In: Basile A, Charcosset C (eds) Current trends and future developments on (bio-) membranes: membrane processes in the pharmaceutical and biotechnological field. Elsevier, Amsterdam, NL, Oxford/Cambridge, USA, pp 123–150

    Chapter  Google Scholar 

  82. Transfiguracion J, Jorio H, Meghrous J et al (2007) High yield purification of functional baculovirus vectors by size exclusion chromatography. J Virol Methods 142(1–2):21–28. https://doi.org/10.1016/j.jviromet.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  83. Barsoum J (1999) Concentration of recombinant baculovirus by cation-exchange chromatography. Biotechniques 26(5):834–836, 838, 840. https://doi.org/10.2144/99265bm07

    Article  CAS  PubMed  Google Scholar 

  84. Grein TA, Michalsky R, Vega López M et al (2012) Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography. J Virol Methods 183(2):117–124. https://doi.org/10.1016/j.jviromet.2012.03.031

    Article  CAS  PubMed  Google Scholar 

  85. Wu C, Soh KY, Wang S (2007) Ion-exchange membrane chromatography method for rapid and efficient purification of recombinant baculovirus and baculovirus gp64 protein. Hum Gene Ther 18(7):665–672. https://doi.org/10.1089/hum.2007.020

    Article  CAS  PubMed  Google Scholar 

  86. Vicente T, Peixoto C, Alves PM et al (2010) Modeling electrostatic interactions of baculovirus vectors for ion-exchange process development. J Chromatogr A 1217(24):3754–3764. https://doi.org/10.1016/j.chroma.2010.03.059

    Article  CAS  PubMed  Google Scholar 

  87. Chen G-Y, Chen C-Y, Chang MD-T et al (2009) Concanavalin A affinity chromatography for efficient baculovirus purification. Biotechnol Prog 25(6):1669–1677. https://doi.org/10.1002/btpr.253

    Article  CAS  PubMed  Google Scholar 

  88. Nasimuzzaman M, Lynn D, van der Loo JC et al (2016) Purification of baculovirus vectors using heparin affinity chromatography. Mol Ther Methods Clin Dev 3:16071. https://doi.org/10.1038/mtm.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nasimuzzaman M, van der Loo JCM, Malik P (2018) Production and purification of baculovirus for gene therapy application. J Vis Exp (134):57019. https://doi.org/10.3791/57019

  90. Kaikkonen MU, Viholainen JI, Närvänen A et al (2008) Targeting and purification of metabolically biotinylated baculovirus. Hum Gene Ther 19(6):589–600. https://doi.org/10.1089/hum.2007.177

    Article  CAS  PubMed  Google Scholar 

  91. Lothert K, Sprick G, Beyer F et al (2020) Membrane-based steric exclusion chromatography for the purification of a recombinant baculovirus and its application for cell therapy. J Virol Methods 275:113756. https://doi.org/10.1016/j.jviromet.2019.113756

    Article  CAS  PubMed  Google Scholar 

  92. Michalsky R, Passarelli AL, Pfromm PH et al (2009) Purification of the baculovirus Autographa californica M nucleopolyhedrovirus by tangential flow ultrafiltration. Desalination 245(1–3):694–700. https://doi.org/10.1016/j.desal.2009.02.039

    Article  CAS  Google Scholar 

  93. Michalsky R, Passarelli AL, Pfromm PH et al (2010) Concentration of the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) by ultrafiltration. Desalination 250(3):1125–1127. https://doi.org/10.1016/j.desal.2009.09.123

    Article  CAS  Google Scholar 

  94. Nestola P, Peixoto C, Silva RRJS et al (2015) Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 112(5):843–857. https://doi.org/10.1002/bit.25545

    Article  CAS  PubMed  Google Scholar 

  95. Prashad M, Tarrach K (2006) Depth filtration: cell clarification of bioreactor offloads. Filtr Separat 43(7):28–30. https://doi.org/10.1016/S0015-1882(06)70950-8

    Article  CAS  Google Scholar 

  96. Kalbfuss B, Genzel Y, Wolff M et al (2007) Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines. Biotechnol Bioeng 97(1):73–85. https://doi.org/10.1002/bit.21139

    Article  CAS  PubMed  Google Scholar 

  97. Grzenia DL, Carlson JO, Czermak P et al (2006) Purification of densonucleosis virus by tangential flow ultrafiltration. Biotechnol Prog 22(5):1346–1353. https://doi.org/10.1021/bp060077c

    Article  CAS  PubMed  Google Scholar 

  98. Michalsky R, Pfromm PH, Czermak P et al (2008) Effects of temperature and shear force on infectivity of the baculovirus Autographa californica M nucleopolyhedrovirus. J Virol Methods 153(2):90–96. https://doi.org/10.1016/j.jviromet.2008.07.030

    Article  CAS  PubMed  Google Scholar 

  99. Ikonomou L, Peeters-Joris C, Schneider Y-J et al (2002) Supernatant proteolytic activities of high-five insect cells grown in serum-free culture. Biotechnol Lett 24(12):965–969. https://doi.org/10.1023/A:1015692323167

    Article  CAS  Google Scholar 

  100. Naggie S, Hu YC, Pulliam-Holoman TR et al (1997) Substrate (gelatin) gel electrophoretic method for analysis of protease activity in insect (Sf-9) cells. Biotechnol Tech 11(5):297–300. https://doi.org/10.1023/A:1018411210412

    Article  CAS  Google Scholar 

  101. Czermak P, Nehring D, Wickramasinghe R (2007) Membrane filtration in animal cell culture. In: Walker JM, Pörtner R (eds) Animal cell biotechnology, vol 24. Humana Press, Totowa, NJ, pp 397–420

    Chapter  Google Scholar 

  102. Belfort G, Davis RH, Zydney AL (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membrane Sci 96(1–2):1–58. https://doi.org/10.1016/0376-7388(94)00119-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F.E. was supported by the Heinrich Böll Foundation. The authors would like to thank the Hessen State Ministry of Higher Education, Research and the Arts for the financial support within the Hessen initiative for scientific and economic excellence (LOEWE-Program, LOEWE ZIB (Center for Insect Biotechnology and Bioresources). The authors acknowledge Catherine Meckel-Oschmann and Keven Lothert for revising the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Czermak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eilts, F., Harnischfeger, J., Loewe, D., Wolff, M.W., Salzig, D., Czermak, P. (2021). Production of Baculovirus and Stem Cells for Baculovirus-Mediated Gene Transfer into Human Mesenchymal Stem Cells. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics