Skip to main content

Attenuation Methods for Live Vaccines

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

Abstract

Vaccination was developed by Edward Jenner in 1796. Since then, vaccination and vaccine development research has been a hotspot of research in the scientific community. Various ways of vaccine development are successfully employed in mass production of vaccines. One of the most successful ways to generate vaccines is the method of virulence attenuation in pathogens. The attenuated strains of viruses, bacteria, and parasites are used as vaccines which elicit robust immune response and confers protection against virulent pathogens. This chapter brings together the most common and efficient ways of generating live attenuated vaccine strains in viruses, bacteria, and parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ (2002) Evolutionary dynamics of viral attenuation. J Virol 76(20):10524–10529. https://doi.org/10.1128/jvi.76.20.10524-10529.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ebert D (1998) Experimental evolution of parasites. Science 282(5393):1432–1435. https://doi.org/10.1126/science.282.5393.1432

    Article  CAS  PubMed  Google Scholar 

  3. Dragunsky EM, Rivera E, Donald Hochstein H, Levenbook IS (1990) In vitro characterization of Salmonella typhi mutant strains for live oral vaccines. Vaccine 8(3):263–268. https://doi.org/10.1016/0264-410X(90)90056-R

    Article  CAS  PubMed  Google Scholar 

  4. Kirkpatrick BD, McKenzie R, O’Neill JP, Larsson CJ, Bourgeois AL, Shimko J, Bentley M, Makin J, Chatfield S, Hindle Z, Fidler C, Robinson BE, Ventrone CH, Bansal N, Carpenter CM, Kutzko D, Hamlet S, Lapointe C, Taylor DN (2006) Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine 24(2):116–123. https://doi.org/10.1016/j.vaccine.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  5. Hohmann EL, Oletta CA, Killeen KP, Miller SI (1996) phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 173(6):1408–1414. https://doi.org/10.1093/infdis/173.6.1408

    Article  CAS  PubMed  Google Scholar 

  6. Kaper JB, Michalski J, Ketley JM, Levine MM (1994) Potential for reacquisition of cholera enterotoxin genes by attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Infect Immun 62(4):1480–1483

    Article  CAS  Google Scholar 

  7. Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SHI, Harty JT (2011) Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9(6):451–462. https://doi.org/10.1016/j.chom.2011.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ravenel MP (1928) La Vaccination Préventive Contre la Tuberculose par le “BCG.”. Am J Public Health Nations Health 18(8):1075. https://doi.org/10.2105/ajph.18.8.1075-a

    Article  PubMed Central  Google Scholar 

  9. Germanier R, Fürer E (1971) Immunity in experimental salmonellosis. II. Basis for the avirulence and protective capacity of gal E mutants of Salmonella typhimurium. Infect Immun 4(6):663–673

    Article  CAS  Google Scholar 

  10. Wilson DB, Hogness DS (1964) The enzymes of the galactose operon in Escherichia coli. I. Purification and characterization of uridine diphosphogalactose 4-epimerase. J Biol Chem 239:2469–2481

    CAS  PubMed  Google Scholar 

  11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with de folin phenol reagent. Readings 193(1):265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  Google Scholar 

  12. Takahashi M, Otsuka T, Okuno Y, Asano Y, Yazaki T, Isomura S (1974) Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 2(7892):1288–1290. https://doi.org/10.1016/S0140-6736(74)90144-5

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Arévalo MT, Diaz-Arévalo D, Chen Y, Choi JG, Zeng M (2015) Generation of a safe and effective live viral vaccine by virus self-attenuation using species-specific artificial microRNA. J Control Release 207:70–76. https://doi.org/10.1016/j.jconrel.2015.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan RLY, Valkenburg SA, Wong CKS, Li OTW, Nicholls JM, Rabadan R, Peiris JSM, Poon LLM (2015) Generation of live attenuated influenza virus by using codon usage bias. J Virol 89(21):10762–10773. https://doi.org/10.1128/jvi.01443-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Liu SY, Chen HW, Xu J, Chapon M, Zhang T, Zhou F, Wang YE, Quanquin N, Wang G, Tian X, He Z, Liu L, Yu W, Sanchez DJ, Liang Y, Jiang T, Modlin R, Bloom BR, Li Q, Deng JC, Zhou P, Qin FXF, Cheng G (2017) Generation of a live attenuated influenza vaccine that elicits broad protection in mice and ferrets. Cell Host Microbe 21(3):334–343. https://doi.org/10.1016/j.chom.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Van Dijk MR, Douradinha B, Franke-Fayard B, Heussler V, Van Dooren MW, Van Schaijk B, Van Gemert GJ, Sauerwein RW, Mota MM, Waters AP, Janse CJ (2005) Genetically attenuated P36p-deficient malarial sporozouites induce protective immunity and apoptosis of infected liver cells. Proc Natl Acad Sci U S A 102(34):12194–12199. https://doi.org/10.1073/pnas.0500925102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, Van Der Keur M, Van Der Linden R, Sinden RE, Waters AP, Janse CJ (2004) A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol 137(1):23–33. https://doi.org/10.1016/j.molbiopara.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  18. De Koning-Ward TF, Sperança MA, Waters AP, Janse CJ (1999) Analysis of stage specificity of promoters in Plasmodium berghei using luciferase as a reporter. Mol Biochem Parasitol 100(1):141–146. https://doi.org/10.1016/S0166-6851(99)00042-0

    Article  PubMed  Google Scholar 

  19. De Koning-Ward TF, Fidock DA, Thathy V, Menard R, Van Spaendonk RML, Waters AP, Janse CJ (2000) The selectable marker human dihydrofolate reductase enables sequential genetic manipulation of the Plasmodium berghei genome. Mol Biochem Parasitol 106(2):199–212. https://doi.org/10.1016/S0166-6851(99)00189-9

    Article  PubMed  Google Scholar 

  20. Stowers A, Carter R (2001) Current developments in malaria transmission-blocking vaccines. Expert Opin Biol Ther 1(4):619–628

    Article  CAS  Google Scholar 

  21. Carrolo M, Giordano S, Cabrita-Santos L, Corso S, Vigário AM, Silva S, Leirião P, Carapau D, Armas-Portela R, Comoglio PM, Rodriguez A, Mota MM (2003) Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 9:1363–1369. https://doi.org/10.1038/nm947

    Article  PubMed  Google Scholar 

  22. Mota MM, Pradel G, Vanderberg JP, Hafalla JCR, Frevert U, Nussenzweig RS, Nussenzweig V, Rodriguez A (2001) Migration of Plasmodium sporozoites through cells before infection. Science 291(5501):141–144. https://doi.org/10.1126/science.291.5501.141

    Article  CAS  PubMed  Google Scholar 

  23. Orjih AU, Cochrane AH, Nussenzweig RS (1982) Comparative studies on the immunogenicity of infective and attenuated sporozoites of Plasmodium berghei. Trans R Soc Trop Med Hyg 76(1):57–61. https://doi.org/10.1016/0035-9203(82)90019-0

    Article  CAS  PubMed  Google Scholar 

  24. Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. Nature 216(5111):160–162

    Article  CAS  Google Scholar 

  25. Fukasawa T, Nikaido H (1961) Galactose-sensitive mutants of Salmonella II. Bacteriolysis induced by galactose. Biochim Biophys Acta 48:470–483. https://doi.org/10.1016/0006-3002(61)90045-2

    Article  CAS  PubMed  Google Scholar 

  26. Reed LJ, Müench H (1938) A simple method of estimating 50 percent end-points. Am. J Hyg 27:493–497

    Google Scholar 

  27. Caunt AE, Taylor Robinson D (1964) Cell-free varicella-zoster virus in tissue culture. J Hyg (Lond) 62:413–424. https://doi.org/10.1017/S0022172400040158

    Article  CAS  Google Scholar 

  28. Grose C, Perrotta DM, Brunell PA, Con Smith G (1979) Cell-free varicella-zoster virus in cultured human melanoma cells. J Gen Virol 43(1):15–27. https://doi.org/10.1099/0022-1317-43-1-15

    Article  CAS  PubMed  Google Scholar 

  29. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Zhang M, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3):401–406. https://doi.org/10.1038/ng1117

    Article  CAS  PubMed  Google Scholar 

  30. Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, García-Sastre A (2010) Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107(25):11531–11536. https://doi.org/10.1073/pnas.0914994107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97(11):6108–6113. https://doi.org/10.1073/pnas.100133697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Arévalo MT, Chen Y, Posadas O, Smith JA, Zeng M (2014) Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Hum Vaccines Immunother 10(5):1211–1220. https://doi.org/10.4161/hv.28407

    Article  CAS  Google Scholar 

  33. Priore SF, Moss WN, Turner DH (2012) Influenza A virus coding regions exhibit host-specific global ordered RNA structure. PLoS One 7:e35989. https://doi.org/10.1371/journal.pone.0035989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu L, Bao L, Li F, Lv Q, Ma Y, Zhou J, Xu Y, Deng W, Zhan L, Zhu H, Ma C, Shu Y, Qin C (2011) Adaption of seasonal H1N1 influenza virus in mice. PLoS One 6(12):e28901. https://doi.org/10.1371/journal.pone.0028901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown EG, Liu H, Chang Kit L, Baird S, Nesrallah M (2001) Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: Identification of functional themes. Proc Natl Acad Sci U S A 98(12):6883–6888. https://doi.org/10.1073/pnas.111165798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poon LLM, Leung YHC, Nicholls JM, Perera P-Y, Lichy JH, Yamamoto M, Waldmann TA, Peiris JSM, Perera LP (2009) Vaccinia virus-based multivalent H5N1 avian influenza vaccines adjuvanted with IL-15 confer sterile cross-clade protection in mice. J Immunol 182(5):3063–3071. https://doi.org/10.4049/jimmunol.0803467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valkenburg SA, Li OTW, Mak PWY, Mok CKP, Nicholls JM, Guan Y, Waldmann TA, Peiris JSM, Perera LP, Poon LLM (2014) IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4+ T cells for heterosubtypic protection. Proc Natl Acad Sci U S A 111:5676–5681. https://doi.org/10.1073/pnas.1403684111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen X, Huang X, Mok BW-Y, Chen Y, Zheng M, Lau S-Y, Wang P, Song W, Jin D-Y, Yuen K-Y, Chen H (2014) NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells. J Immunol 192(8):3753–3764. https://doi.org/10.4049/jimmunol.1302813

    Article  CAS  PubMed  Google Scholar 

  39. Blaschke V, Reich K, Blaschke S, Zipprich S, Neumann C (2000) Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: Validation of a new real-time RT-PCR technology. J Immunol Methods 246(1-2):79–90. https://doi.org/10.1016/S0022-1759(00)00304-5

    Article  CAS  PubMed  Google Scholar 

  40. Nicholls JM, Wong LPW, Chan RWY, Poon LLM, So LKY, Yen HL, Fung K, Van Poucke S, Peiris JSM (2012) Detection of highly pathogenic influenza and pandemic influenza virus in formalin fixed tissues by immunohistochemical methods. J Virol Methods 179(2):409–413. https://doi.org/10.1016/j.jviromet.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  41. Buchy P, Mardy S, Vong S, Toyoda T, Aubin JT, Miller M, Touch S, Sovann L, Dufourcq JB, Richner B, Van Tu P, Tien NTK, Lim W, Peiris JSM, Van der Werf S (2007) Influenza A/H5N1 virus infection in humans in Cambodia. J Clin Virol 39(3):164–168. https://doi.org/10.1016/j.jcv.2007.04.010

    Article  PubMed  Google Scholar 

  42. Ding H, Tsai C, Gutiérrez RA, Zhou F, Buchy P, Deubel V, Zhou P (2011) Superior neutralizing antibody response and protection in mice vaccinated with heterologous DNA prime and virus like particle boost against HPAI H5N1 virus. PLoS One 6(1):e16563. https://doi.org/10.1371/journal.pone.0016563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shahangian A, Chow EK, Tian X, Kang JR, Ghaffari A, Liu SY, Belperio JA, Cheng G, Deng JC (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119(7):1910–1920. https://doi.org/10.1172/JCI35412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Spaendonk RML, Ramesar J, Van Wigcheren A, Eling W, Beetsma AL, Van Gemert GJ, Hooghof J, Janse CJ, Waters AP (2001) Functional equivalence of structurally distinct ribosomes in the malaria parasite, Plasmodium berghei. J Biol Chem 276(25):22638–22647. https://doi.org/10.1074/jbc.M101234200

    Article  PubMed  Google Scholar 

  45. Ménard R, Janse C (1997) Gene targeting in malaria parasites. Methods 13(2):148–157. https://doi.org/10.1006/meth.1997.0507

    Article  PubMed  Google Scholar 

  46. Janse CJ, Waters AP (1995) Plasmodium berghei: The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol Today 11(4):138–143

    Article  CAS  Google Scholar 

  47. Van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JAM, Dodemont HJ, Stunnenberg HG, Van Gemert GJ, Sauerwein RW, Eling W (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104(1):153–164. https://doi.org/10.1016/S0092-8674(01)00199-4

    Article  PubMed  Google Scholar 

  48. Ozaki LS, Gwadz RW, Godson GN (1984) Simple centrifugation method for rapid separation of sporozoites from mosquitoes. J Parasitol 70(5):831–833. https://doi.org/10.2307/3281779

    Article  CAS  PubMed  Google Scholar 

  49. Stewart MJ, Vanderberg JP (1988) Malaria sporozoites leave behind trails of circumsporozoite protein during gliding motility. J Protozool 35(3):389–393. https://doi.org/10.1111/j.1550-7408.1988.tb04115.x

    Article  CAS  PubMed  Google Scholar 

  50. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Rénia L, Hannoun L, Elings W, Levy S, Boucheix C, Mazier D (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9(1):93–96. https://doi.org/10.1038/nm808

    Article  CAS  PubMed  Google Scholar 

  51. Leirião P, Albuquerque SS, Corso S, van Gemert GJ, Sauerwein RW, Rodriguez A, Giordano S, Mota MM (2005) HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cell Microbiol 7(4):603–609. https://doi.org/10.1111/j.1462-5822.2004.00490.x

    Article  PubMed  Google Scholar 

  52. Moss WN, Priore SF, Turner DH (2011) Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 17(6):991–1011. https://doi.org/10.1261/rna.2619511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gog JR, Dos Santos Afonso E, Dalton RM, Leclercq I, Tiley L, Elton D, von Kirchbach JC, Naffakh N, Escriou N, Digard P (2007) Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 35(6):1897–1907. https://doi.org/10.1093/nar/gkm087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lamb RA, Takeda M (2001) Death by influenza virus protein. Nat Med 7(12):1306–1312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipshikha Chakravortty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hajra, D., Datey, A., Chakravortty, D. (2021). Attenuation Methods for Live Vaccines. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics