Skip to main content

Exploitation of Capsule Polymerases for Enzymatic Synthesis of Polysaccharide Antigens Used in Glycoconjugate Vaccines

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

Abstract

The exploitation of recombinant enzymes for the synthesis of complex carbohydrates is getting increasing attention. Unfortunately, the analysis of the resulting products often requires advanced methods like nuclear magnetic resonance spectroscopy and mass spectrometry. Here, we use the capsule polymerases Cps4B and Cps11D from Actinobacillus pleuropneumoniae serotypes 4 and 11, respectively, as examples for the in vitro synthesis of capsule polymers similar to those used in glycoconjugate vaccine formulations. We demonstrate how substrate turnover in an enzymatic reaction can be analyzed by HPLC-based anion exchange chromatography and provide the protocol for separation and detection of UV-active polymer. Moreover, we describe how UV-inactive polymer can be separated and visualized using polyacrylamide gel electrophoresis followed by combined alcian blue–silver staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willis LM, Whitfield C (2013) Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 378:35–44. https://doi.org/10.1016/j.carres.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  2. Vella M, Pace D (2015) Glycoconjugate vaccines: an update. Expert Opin Biol Ther 15:529–546. https://doi.org/10.1517/14712598.2015.993375

    Article  CAS  PubMed  Google Scholar 

  3. Berti F, Adamo R (2013) Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 8:1653–1663. https://doi.org/10.1021/cb400423g

    Article  CAS  PubMed  Google Scholar 

  4. Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 6:1045–1066. https://doi.org/10.1517/17460441.2011.609554

    Article  CAS  PubMed  Google Scholar 

  5. LaForce FM, Konde K, Viviani S, Préziosi M-P (2007) The meningitis vaccine project. Vaccine 25(Suppl 1):A97–A100. https://doi.org/10.1016/j.vaccine.2007.04.049

    Article  PubMed  Google Scholar 

  6. Xie O, Pollard AJ, Mueller JE, Norheim G (2013) Emergence of serogroup X meningococcal disease in Africa: need for a vaccine. Vaccine 31:2852–2861. https://doi.org/10.1016/j.vaccine.2013.04.036

    Article  PubMed  Google Scholar 

  7. Ramjeet M, Deslandes V, Gouré J, Jacques M (2008) Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 9:25–45. https://doi.org/10.1017/S1466252307001338

    Article  PubMed  Google Scholar 

  8. Micoli F, Del Bino L, Alfini R et al (2019) Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines 18:1–15. https://doi.org/10.1080/14760584.2019.1657012

    Article  CAS  Google Scholar 

  9. Adamo R (2017) Advancing homogeneous antimicrobial glycoconjugate vaccines. Acc Chem Res 50:1270–1279. https://doi.org/10.1021/acs.accounts.7b00106

    Article  CAS  PubMed  Google Scholar 

  10. Fiebig T, Berti F, Freiberger F et al (2014) Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: a new perspective for vaccine development. Glycobiology 24:150–158. https://doi.org/10.1093/glycob/cwt102

    Article  CAS  PubMed  Google Scholar 

  11. Muindi KM, McCarthy PC, Wang T et al (2014) Characterization of the meningococcal serogroup X capsule N-acetylglucosamine-1-phosphotransferase. Glycobiology 24:139–149. https://doi.org/10.1093/glycob/cwt091

    Article  CAS  PubMed  Google Scholar 

  12. Fiebig T, Litschko C, Freiberger F et al (2018) Efficient solid-phase synthesis of meningococcal capsular oligosaccharides enables simple and fast chemoenzymatic vaccine production. J Biol Chem 293:953–962. https://doi.org/10.1074/jbc.RA117.000488

    Article  CAS  PubMed  Google Scholar 

  13. Ming SA, Cottman-Thomas E, Black NC et al (2018) Interaction of Neisseria meningitidis Group X N-acetylglucosamine-1-phosphotransferase with its donor substrate. Glycobiology 28:100–107. https://doi.org/10.1093/glycob/cwx100

    Article  CAS  PubMed  Google Scholar 

  14. Oldrini D, Fiebig T, Romano MR et al (2018) Combined chemical synthesis and tailored enzymatic elongation provide fully synthetic and conjugation-ready Neisseria meningitidis serogroup X vaccine antigens. ACS Chem Biol 13:984–994. https://doi.org/10.1021/acschembio.7b01057

    Article  CAS  PubMed  Google Scholar 

  15. Fiebig T, Romano MR, Oldrini D et al (2016) An efficient cell free enzyme-based total synthesis of a meningococcal vaccine candidate. NPJ Vaccines 1:16017. https://doi.org/10.1038/npjvaccines.2016.17

    Article  PubMed  PubMed Central  Google Scholar 

  16. Byrd W, Harmon BG, Kadis S (1992) Protective efficacy of conjugate vaccines against experimental challenge with porcine Actinobacillus pleuropneumoniae. Vet Immunol Immunopathol 34:307–324. https://doi.org/10.1016/0165-2427(92)90172-M

    Article  CAS  PubMed  Google Scholar 

  17. Byrd W, Kadis S (1992) Preparation, characterization, and immunogenicity of conjugate vaccines directed against Actinobacillus pleuropneumoniae virulence determinants. Infect Immun 60:3042–3051

    Article  CAS  Google Scholar 

  18. Willis LM, Stupak J, Richards MR et al (2013) Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci U S A 110:7868–7873. https://doi.org/10.1073/pnas.1222317110

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fiebig T, Freiberger F, Pinto V et al (2014) Molecular cloning and functional characterization of components of the capsule biosynthesis complex of Neisseria meningitidis serogroup A: toward in vitro vaccine production. J Biol Chem 289:19395–19407. https://doi.org/10.1074/jbc.M114.575142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Litschko C, Oldrini D, Budde I et al (2018) A new family of capsule polymerases generates teichoic acid-like capsule polymers in gram-negative pathogens. MBio 9:e00641–e00618. https://doi.org/10.1128/mBio.00641-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Litschko C, Romano MR, Pinto V et al (2015) The capsule polymerase CslB of Neisseria meningitidis serogroup L catalyzes the synthesis of a complex trimeric repeating unit comprising glycosidic and phosphodiester linkages. J Biol Chem 290:24355–24366. https://doi.org/10.1074/jbc.M115.678094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perry MB, Altman E, Brisson JR et al (1990) Structural characteristics of the antigenic capsular polysaccharides and lipopolysaccharides involved in the serological classification of Actinobacillus (Haemophilus) pleuropneumoniae strains. Serodiagn Immunother Infect Dis 4:299–308. https://doi.org/10.1016/0888-0786(90)90018-J

    Article  Google Scholar 

  23. Fiebig T, Litschko C, Gerardy-Schahn R et al (2017) Means and methods for producing phosphate containing capsular polysaccharides. LU100349

    Google Scholar 

  24. Min H, Cowman MK (1986) Combined alcian blue and silver staining of glycosaminoglycans in polyacrylamide gels: application to electrophoretic analysis of molecular weight distribution. Anal Biochem 155:275–285. https://doi.org/10.1016/0003-2697(86)90437-9

    Article  CAS  PubMed  Google Scholar 

  25. Breton C, Snajdrová L, Jeanneau C et al (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R. https://doi.org/10.1093/glycob/cwj016

    Article  CAS  PubMed  Google Scholar 

  26. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555. https://doi.org/10.1146/annurev.biochem.76.061005.092322

    Article  CAS  PubMed  Google Scholar 

  27. Dubray G, Bezard G (1982) A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119:325–329. https://doi.org/10.1016/0003-2697(82)90593-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 412824531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Fiebig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Litschko, C., Budde, I., Berger, M., Fiebig, T. (2021). Exploitation of Capsule Polymerases for Enzymatic Synthesis of Polysaccharide Antigens Used in Glycoconjugate Vaccines. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics