Skip to main content

Biosynthesis of Glycoconjugate Virus-like Particles (VLPs)

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

  • 3088 Accesses

Abstract

The outermost surface of bacterial pathogens consists primarily of complex carbohydrate structures—polysaccharides, glycolipids, and glycoproteins. To raise a long-lasting and effective immune response against carbohydrate antigens, they generally require covalent attachment to an immunogenic carrier protein—a so-called glycoconjugate vaccine. One hurdle to the development of glycoconjugate vaccines is that carbohydrate antigens remain inaccessible to recombinant production. Thus, the carbohydrate antigen is typically purified from the pathogen and then chemically conjugated to an immunogenic protein. Recent developments in the field of bacterial glycoengineering have opened the opportunity for total recombinant production of glycoconjugate vaccines. In this method, we describe the production of proteinaceous, virus-like particles (VLPs) bearing the conserved N-glycan of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramjeet M, Deslandes V, Goure J, Jacques M (2008) Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev 9(1):25–45

    Article  Google Scholar 

  2. Choi KJ, Grass S, Paek S, St Geme JW 3rd, Yeo HJ (2010) The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin. PLoS One 5(12):e15888

    Article  CAS  Google Scholar 

  3. Schwarz F, Fan YY, Schubert M, Aebi M (2011) Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. J Biol Chem 286(40):35267–35274

    Article  CAS  Google Scholar 

  4. Cuccui J, Terra VS, Bosse JT, Naegeli A, Abouelhadid S, Li Y, Lin CW, Vohra P, Tucker AW, Rycroft AN, Maskell DJ, Aebi M, Langford PR, Wren BW, Consortium BRT (2017) The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for adhesion and has potential use in glycoengineering. Open Biol 7(1)

    Google Scholar 

  5. Naegeli A, Neupert C, Fan YY, Lin CW, Poljak K, Papini AM, Schwarz F, Aebi M (2014) Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli. J Biol Chem 289(4):2170–2179

    Article  CAS  Google Scholar 

  6. Keys TG, Wetter M, Hang I, Rutschmann C, Russo S, Mally M, Steffen M, Zuppiger M, Muller F, Schneider J, Faridmoayer A, Lin CW, Aebi M (2017) A biosynthetic route for polysialylating proteins in Escherichia coli. Metab Eng 44:293–301

    Article  CAS  Google Scholar 

  7. Tissot AC, Renhofa R, Schmitz N, Cielens I, Meijerink E, Ose V, Jennings GT, Saudan P, Pumpens P, Bachmann MF (2010) Versatile virus-like particle carrier for epitope based vaccines. PLoS One 5(3):e9809

    Article  Google Scholar 

  8. Shishovs M, Rumnieks J, Diebolder C, Jaudzems K, Andreas LB, Stanek J, Kazaks A, Kotelovica S, Akopjana I, Pintacuda G, Koning RI, Tars K (2016) Structure of AP205 coat protein reveals circular permutation in ssRNA bacteriophages. J Mol Biol 428(21):4267–4279

    Article  CAS  Google Scholar 

  9. Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, Biswas S, Howarth M (2016) Plug-and-Display: decoration of virus-like particles via isopeptide bonds for modular immunization. Sci Rep 6:19234

    Article  CAS  Google Scholar 

  10. Deuschle U, Kammerer W, Gentz R, Bujard H (1986) Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J 5(11):2987–2994

    Article  CAS  Google Scholar 

  11. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535

    Article  CAS  Google Scholar 

  12. Porterfield JZ, Zlotnick A (2010) A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. Virology 407(2):281–288

    Article  CAS  Google Scholar 

  13. Kang D, Gho YS, Suh M, Kang C (2002) Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Kor Chem Soc 23(11):1511–1512

    Article  CAS  Google Scholar 

  14. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Markus Aebi for his guidance in study design and comments on the manuscript, Dr. Miriam Lucas and ScopeM for assistance with transmission electron microscopy, and Dr. Serge Chesnov and the FGCZ for mass spectrometric analysis. This research was funded through a Bridge Discovery grant and by an ETH Zurich Career Seed Grant (SEED-33 16-1) awarded to T.G.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Keys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oi, K.K., Kloter, T.A., Keys, T.G. (2021). Biosynthesis of Glycoconjugate Virus-like Particles (VLPs). In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics