Skip to main content

Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Ice recrystallization inhibition assays are used to screen for compounds that possess the ability to inhibit ice recrystallization. The most common of these assays are the splat cooling assay (SCA) and sucrose sandwich assay (SSA). These two assays possess similarities; however, they vary in their sample size, cooling rate, and the solution used to dissolve the analyte. In this chapter, both assay methods are described in detail, and we perform a direct comparison of the assays by evaluating the IRI activity of an antifreeze protein (AFP I). IRI activity is quantified by using ImageJ software to analyze ice crystals, and a quantitative value describing the efficiency of the inhibitor is generated. This analysis emphasizes the importance of choosing the right assay to measure IRI activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009) Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW Theory. J Phys Chem B 113:2865–2873

    Article  CAS  PubMed  Google Scholar 

  2. Alley R, Perepezko J, Bentley C (1986) Grain growth in polar ice: I. Theory. J Glaciol 32:415–424

    Article  Google Scholar 

  3. Alley R, Perepezko J, Bentley C (1986) Grain growth in polar ice: II. Application. J Glaciol 32:425–433

    Article  Google Scholar 

  4. Sutton R, Lips A, Piccirillo G, Sztehlo A (1996) Kinetics of ice recrystallization in aqueous fructose solutions. J Food Sci 61:741–745

    Article  CAS  Google Scholar 

  5. Meryman H (1957) Physical limitations of the rapid freezing method. Proc R Soc Lond A 147:452–459

    CAS  Google Scholar 

  6. Lovelock J, Bishop M (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–1395

    Article  CAS  PubMed  Google Scholar 

  7. Lovelock JE, Polge C (1954) The immobilization of spermatozoa by freezing and thawing and the protective action of glycerol. Biochem J 58:618–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGann L (1978) Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology 15:382–390

    Article  CAS  PubMed  Google Scholar 

  9. Briard J, Jahan S, Chandran P, Allan D, Pineault N, Ben R (2016) Small-molecule ice recrystallization inhibitors improve the post-thaw function of hematopoietic stem and progenitor cells. ACS Omega 1:1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Briard JG, Poisosn JS, Turner TR, Capiccioti CJ, Acker JP, Ben RN (2016) Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep 6:23619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Capicciotti C, Kurach J, Turner T, Mancini R, Acker J, Ben R (2015) Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci Rep 5:9692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Capicciotti C, Poisson J, Boddy C, Ben R (2015) Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 70:79–89

    Article  CAS  PubMed  Google Scholar 

  13. Leclere M, Kwok B, Wu L, Allan D, Ben R (2011) C-linked antifreeze glycoprotein (C-AFGP) analogues as novel cryoprotectants. Bioconjug Chem 22:1804–1810

    Article  CAS  PubMed  Google Scholar 

  14. Poisson J, Briard J, Turner T, Acker J, Ben R (2017) Hydroxyethyl starch supplemented with ice recrystallization inhibitors greatly improves cryopreservation of human red blood cells. Bioprocess J 15:16–21

    Article  Google Scholar 

  15. Deller R, Vatish M, Mitchell D, Gibson M (2015) Glycerol-free cryopreservation of red blood cells enabled by ice recrystallization inhibiting polymers. ACS Biomater Sci Eng 1:789–794

    Article  CAS  Google Scholar 

  16. Jeon SM, Naing AH, Park KI, Kim CK (2015) The effect of antifreeze protein on the cryopreservation of chrysanthemums. Plant Cell Tissue Organ Cult 13:375–402

    Google Scholar 

  17. Mitchell D, Cameron N, Gibson M (2015) Rational, yet simple, design and synthesis of an antifreeze-protein inspired polymer for cellular cryopreservation. Chem Commun 51:12977–12980

    Article  CAS  Google Scholar 

  18. Blau H, Daley G (2019) Stem cells in the treatment of disease. N Engl J Med 380:1748–1760

    Article  CAS  PubMed  Google Scholar 

  19. Damodaran S (2007) Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. J Agric Food Chem 55:10918–10923

    Article  CAS  PubMed  Google Scholar 

  20. Payne S, Sandford D, Harris A, Young O (1994) The effects of antifreeze proteins on chilled and frozen meat. Science 37:429–438

    CAS  Google Scholar 

  21. Warren C, Mueller C, Mckown R (1992) Ice crystal growth suppression polypeptides and methods of preparation. USA patent: US5118792A

    Google Scholar 

  22. Griffith M, Ewart K (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402

    Article  CAS  PubMed  Google Scholar 

  23. Scholander P, van Dam L, Kanwisher J, Hammel H, Gordon M (1957) Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 49:5–24

    Article  CAS  Google Scholar 

  24. Gordon M, Amdur B, Scholander P (1962) Freezing resistance in some northern fishes. Biol Bull 122:52–62

    Article  Google Scholar 

  25. Devries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    Article  CAS  PubMed  Google Scholar 

  26. Cheng C, Chen L, Near T, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand Nototheniid fish infer an Antarctic evolutionary origin. Mol Bio Evol 20:1897–1908

    Article  CAS  Google Scholar 

  27. Harding M, Anderberg P, Haymet A (2003) Antifreeze glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  CAS  PubMed  Google Scholar 

  28. Griffith M, Antikainen M, Hon W-C, Pihakaski-Maunsbach K, Yu XM, Chun J, Yang D (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    Article  CAS  Google Scholar 

  29. Dunamn J, Horwarth K, Tomchaney A, Patterson J (1982) Antifreeze agents of terrestrial arthropods. Comp Biochem Physiol 73:545–555

    Article  Google Scholar 

  30. Lee J, Park K, Park S, Park H, Song Y, Kang SH, Kim H (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  CAS  PubMed  Google Scholar 

  31. Sun X, Griffith M, Pasternak J, Glick B (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 41:776–784

    Article  CAS  PubMed  Google Scholar 

  32. Anisuzzaman A, Anderson L, Navia J (1988) Synthesis of a close analog of the repeating unit of the antifreeze glycoproteins of polar fish. Carbohydr Res 174:265–278

    Article  CAS  PubMed  Google Scholar 

  33. Ben R, Eniade A, Haur L (1999) Synthesis of a C-linked antifreeze glycoprotein (AFGP) mimic: probes for investigating the mechanism of action. Org Lett 1:1759–1762

    Article  CAS  Google Scholar 

  34. Eniade A, Purushotham M, Ben R (2003) A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogues. Cell Biochem Biophys 38:115–124

    Article  CAS  PubMed  Google Scholar 

  35. Filira F, Biondi L, Scolaro B, Foffani M, Mammi S, Peggion E, Rocchi P (1990) Solid phase synthesis and conformation of sequential glycosylated polytripeptide sequences related to antifreeze glycoproteins. Int J Biol Macromol 12:41–49

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Wang W, von Moos E, Jackman J, Mealing G, Monette R, Ben R (2007) In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue. Biomacromolecules 8:1456–1462

    Article  CAS  PubMed  Google Scholar 

  37. Tsuda T, Nishimura S (1996) Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers. Chem Commun 1996:2779–2780

    Article  Google Scholar 

  38. Balcerzak A, Febbraro M, Ben R (2013) The importance of hydrophobic moieties in ice recrystallization inhibitors. RSC Adv 3:3232–3236

    Article  CAS  Google Scholar 

  39. Capicciotti C, Leclere M, Perras F, Bryce D, Paulin H, Harden J, Liu Y, Ben R (2012) Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem Sci 3:1408–1419

    Article  CAS  Google Scholar 

  40. Capicciotti C, Mancini R, Turner T, Koyama T, Alteen M, Doshi M, Inada T, Acker J, Ben R (2016) O-aryl-glycoside ice recrystallization inhibitors as novel cryoprotectants: a structure-function study. ACS Omega 1:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Capicciotti C, Trant J, Leclere M, Ben R (2011) Synthesis of C-linked triazole-containing AFGP analogues and their ability to inhibit ice recrystallization. Bioconjug Chem 22:605–611

    Article  CAS  PubMed  Google Scholar 

  42. Tam R, Ferreira S, Czechura P, Chaytor J, Ben R (2008) Hydration indexes – a better parameter for explaining small molecule hydration in inhibition of ice recrystallization. J Am Chem Soc 130:17494–17501

    Article  CAS  PubMed  Google Scholar 

  43. Trant J, Biggs R, Capicciotti C, Ben R (2013) Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues. RSC Adv 3:26005–26009

    Article  CAS  Google Scholar 

  44. Biggs C, Bailey TL, Graham B, Stubbs C, Fayter A, Gibson M (2017) Polymer mimics of biomacromolecular antifreezes. Nat Commun 8:1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. MacDonald M, Cornejo N, Gellman S (2017) Inhibition of ice recrystallization by nylon-3 polymers. ACS Macro Lett 6:695–699

    Article  CAS  Google Scholar 

  46. Gibson M, Barker C, Spain S, Albertin L, Cameron N (2009) Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10:328–333

    Article  CAS  PubMed  Google Scholar 

  47. Inada T, Lu S (2003) Inhibition of recrystallization of ice grains by adsorption of poly(vinyl alcohol) onto ice surfaces. Cryst Growth Des 3:747–752

    Article  CAS  Google Scholar 

  48. Burkey A, Riley C, Wang L, Hatridge T, Lynd N (2017) Understanding poly(vinyl alcohol)-mediated ice recrystallization inhibition through ice adsorption measurement and pH effects. Biomacromolecules 19:248–255

    Article  PubMed  CAS  Google Scholar 

  49. Li T, Zhao Y, Zhong Q, Wu T (2019) Inhibiting ice recrystallization by nanocelluloses. Biomacromolecules 20:1667–1674

    Article  PubMed  CAS  Google Scholar 

  50. Mitchell D, Lilliman M, Spain S, Gibson M (2014) Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers. Biomater Sci 2:1787–1795

    Article  CAS  PubMed  Google Scholar 

  51. Stubbs C, Lipecki J, Gibson MI (2017) Regioregular alternating polyampholytes have enhanced biomimetic ice recrystallization activity compared to random copolymers and the role of side chain versus main chain hydrophobicity. Biomacromolecules 18:295–302

    Article  CAS  PubMed  Google Scholar 

  52. Matsumura K, Hyon S-H (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30:4842–4849

    Article  CAS  PubMed  Google Scholar 

  53. Raymond J, De Vries A (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Knight CA (2000) Structural biology. Adding to the antifreeze agenda. Nature 406:249–251

    Article  CAS  PubMed  Google Scholar 

  55. Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    Article  CAS  PubMed  Google Scholar 

  56. Chakrabartty A, Hew CL (1991) The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide. Eur J Biochem 202:1057–1063

    Article  CAS  PubMed  Google Scholar 

  57. Davies P, Hew C (1990) Biochemistry of fish antifreeze proteins. FASEB J 4:2460–2468

    Article  CAS  PubMed  Google Scholar 

  58. Balcerzak A, Capiccioti C, Briard J, Ben R (2014) Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 4:42682–42696

    Article  CAS  Google Scholar 

  59. Tomczak M, Marshall C, Gilbert J, Davies P (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun 311:1041–1046

    Article  CAS  PubMed  Google Scholar 

  60. Mitchell D, Congdon T, Rodger A, Gibson MI (2015) Gold nanoparticle aggregation as a probe of antifreeze (glyco) protein-inspired ice recrystallization inhibition and identification of new IRI active macromolecules. Sci Rep 5:15716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Graham L, Agrawal P, Oleschuk R, Davies PL (2018) High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the ‘splat’ assay. Cryobiology 81:138–144

    Article  PubMed  Google Scholar 

  62. Knight C, Hallett J, Devries A (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  CAS  PubMed  Google Scholar 

  63. Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet C, Holt C, Telford J, Lillford P, Bowles D (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abraham S, Keillor K, Capiccioti CJ, Perley-Robertson E, Keillor JW, Ben RN (2015) Quantitative analysis of the efficacy and potency of novel small molecule ice recrystallization inhibitors. Cryst Growth Des 15:5034–5039

    Article  CAS  Google Scholar 

  65. Mazur P, Cole KW (1985) Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes. Cryobiology 22:509–536

    Article  CAS  PubMed  Google Scholar 

  66. Hagiwara T, Hartel R, Matsukawa S (2006) Relationship between recrystallization rate of ice crystals in sugar solutions and water mobility in freeze-concentrated matrix. Food Biophys 1:74–82

    Article  Google Scholar 

  67. Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009) Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory. J Phys Chem 113:2865–2873

    Article  CAS  Google Scholar 

  68. Rahman AT, Arai T, Yamauchi A, Miura A, Kondo H, Ohyama Y, Tsuda S (2019) Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes. Sci Rep 9:2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Abraham S (2015) Development and implementation of a kinetic quantitative analysis of novel small molecule ice recrystallization inhibitors. PhD thesis, University of Ottawa, Ottawa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert N. Ben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ampaw, A.A., Sibthorpe, A., Ben, R.N. (2021). Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics