Skip to main content

Microwave- and Laser-Assisted Drying for the Anhydrous Preservation of Biologics

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

Abstract

Dry preservation has become an attractive approach for the long-term storage of biologics. By removing water from the matrix to solidify the sample, refrigeration needs are reduced, and thus storage costs are minimized and shipping logistics greatly simplified. This chapter describes two energy deposition technologies, namely, microwave and laser systems, that have recently been used to enhance the rate and nature of solution densification for the purpose of anhydrous preservation of feline oocytes, sperm, and egg white lysozyme in trehalose glass. Several physical screening methodologies used to determine the suitability of an amorphous matrix for biopreservation are also introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy I, Gupta MN (2004) Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem 39:165–177

    Article  CAS  Google Scholar 

  2. Fonseca F, Cenard S, Passot S (2015) Freeze-drying of lactic acid bacteria. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, Methods in molecular biology. Springer, New York, pp 477–488

    Chapter  Google Scholar 

  3. Wang S, Goecke T, Meixner C, Haverich A, Hilfiker A, Wolkers WF (2012) Freeze-dried heart valve scaffolds. Tissue Eng Part C Methods 18:517–525

    Article  CAS  Google Scholar 

  4. Wang S, Oldenhof H, Goecke T, Ramm R, Harder M, Haverich A, Hilfiker A, Wolkers WF (2015) Sucrose diffusion in decellularized heart valves for freeze-drying. Tissue Eng Part C Methods 21:922–931

    Article  Google Scholar 

  5. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  Google Scholar 

  6. Graves-Herring JE, Wildt DE, Comizzoli P (2013) Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature. Biol Reprod 88:139

    Article  Google Scholar 

  7. Feng HY, Wu LJ, Xu A, Hu BR, Hei TK, Yu ZL (2004) Survival of mammalian cells under high vacuum condition for ion bombardment. Cryobiology 49:241–249

    Article  CAS  Google Scholar 

  8. Millqvist-Fureby A, Malmsten M, Bergenstahl B (1999) Spray-drying of trypsin – surface characterisation and activity preservation. Int J Pharm 188:243–253

    Article  CAS  Google Scholar 

  9. Chakraborty N, Biswas D, Parker W, Moyer P, Elliott GD (2008) A role for microwave processing in the dry preservation of mammalian cells. Biotechnol Bioeng 100:782–796

    Article  CAS  Google Scholar 

  10. Iglesias HA, Chirife J, Buera MP (1997) Adsorption isotherm of amorphous trehalose. J Sci Food Agr 75:183–186

    Article  CAS  Google Scholar 

  11. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18:163–167

    Article  CAS  Google Scholar 

  12. Walker B, Kasianowicz J, Krishnasastry M, Bayley H (1994) A pore-forming protein with a metal-actuated switch. Protein Eng 7:655–662

    Article  CAS  Google Scholar 

  13. Acker JP, Lu XM, Young V, Cheley S, Bayley H, Fowler A, Toner M (2003) Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore. Biotechnol Bioeng 82:525–532

    Article  CAS  Google Scholar 

  14. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F (2000) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18:168–171

    Article  CAS  Google Scholar 

  15. de Castro AG, Tunnacliffe A (2000) Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Lett 48:199–202

    Article  Google Scholar 

  16. Beattie GM, Crowe JH, Lopez AD, Cirulli V, Ricordi C, Hayek A (1997) Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage. Diabetes 46:519–523

    Article  CAS  Google Scholar 

  17. Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87

    Article  CAS  Google Scholar 

  18. Eroglu A, Toner M, Toth TL (2002) Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 77:152–158

    Article  Google Scholar 

  19. Elliott GD, Liu XH, Cusick JL, Menze M, Vincent J, Witt T, Hand S, Toner M (2006) Trehalose uptake through P2X7 purinergic channels provides dehydration protection. Cryobiology 52:114–127

    Article  CAS  Google Scholar 

  20. Oliver AE, Jamil K, Crowe JH, Tablin F (2004) Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv Technol 2:35–49

    Article  CAS  Google Scholar 

  21. Pozar DM (1993) Microwave engineering. Wiley, Hoboken, NJ

    Google Scholar 

  22. Albrecht NK, Purchase ME (1977) A comparison of methods for determining the wattage output and energy distribution in microwave ovens. IEEE Trans Ind Appl IA-13:335–342

    Article  Google Scholar 

  23. Laug OB (1977) Evaluation of a test method for measuring microwave oven cooking efficiency. Federal Energy Administration, Washington, DC

    Book  Google Scholar 

  24. Elliott GD, Lee PC, Paramore E, Van Vorst M, Comizzoli P (2015) Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv Biobank 13:164–171

    Article  CAS  Google Scholar 

  25. Patrick JL, Elliott GD, Comizzoli P (2017) Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model. Theriogenology 103:36–43

    Article  CAS  Google Scholar 

  26. Roberts TV, Lawless M, Bali SJ, Hodge C, Sutton G (2013) Surgical outcomes and safety of femtosecond laser cataract surgery: a prospective study of 1500 consecutive cases. Ophthalmology 120:227–233

    Article  Google Scholar 

  27. Kent KM, Graber EM (2012) Laser tattoo removal: a review. Dermatol Surg 38:1–13

    Article  CAS  Google Scholar 

  28. Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527

    Article  CAS  Google Scholar 

  29. Young MA, McKinnon ME, Elliott GD, Trammell SR (2018) Light assisted drying (LAD) for protein stabilization: optical characterization of samples. In: Proc. SPIE 10485, optics and biophotonics in low-resource settings IV. https://doi.org/10.1117/12.2290415

  30. Young MA, Antczak AT, Wawak A, Elliott GD, Trammell SR (2018) Light-assisted drying for protein stabilization. J Biomed Opt 23:1–8

    Article  CAS  Google Scholar 

  31. Rostron P, Gerber D (2016) Raman spectroscopy, a review. Int J Eng Techn Res 6:50–64

    Google Scholar 

  32. Chen T, Fowler A, Toner M (2000) Literature review: supplemented phase diagram of the trehalose-water binary mixture. Cryobiology 40:277–282

    Article  CAS  Google Scholar 

  33. Cellemme SL, Van Vorst M, Paramore E, Elliott GD (2013) Advancing microwave technology for dehydration processing of biologics. Biopreserv Biobank 11:278–284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria D. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Trammell, S., Elliott, G.D. (2021). Microwave- and Laser-Assisted Drying for the Anhydrous Preservation of Biologics. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics