Skip to main content

Zebrafish Neural Crest: Lessons and Tools to Study In Vivo Cell Migration

  • Protocol
  • First Online:
The Epithelial-to Mesenchymal Transition

Abstract

The study of cell migration has been greatly enhanced by the development of new model systems and analysis protocols to study this process in vivo. Zebrafish embryos have been a principal protagonist because they are easily accessible, genetically tractable, and optically transparent. Neural crest cells, on the other hand, are the ideal system to study cell migration. These cells migrate extensively, using different modalities of movement and sharing many traits with metastatic cancer cells. In this chapter, we present new tools and protocols that allow the study of NC development and migration in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stramer BM, Dunn GA (2015) Cells on film—the past and future of cinemicroscopy. J Cell Sci 128:9–13. https://doi.org/10.1242/jcs.165019

    Article  CAS  PubMed  Google Scholar 

  2. BFI. Cheese Mites (1903) | BFI National Archive. n.d.

    Google Scholar 

  3. Meyers JR (2018) Zebrafish: development of a vertebrate model organism. Curr Protoc Essent Lab Technol 16:e19. https://doi.org/10.1002/cpet.19

    Article  Google Scholar 

  4. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer

    Google Scholar 

  5. Delloye-Bourgeois C, Castellani V (2019) Hijacking of embryonic programs by neural crest-derived neuroblastoma: from physiological migration to metastatic dissemination. Front Mol Neurosci 12. https://doi.org/10.3389/fnmol.2019.00052

  6. Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Raible DW, Wood A, Hodsdon W, Henion PD, Weston JA, Eisen JS (1992) Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev Dyn 195:29–42. https://doi.org/10.1002/aja.1001950104

    Article  CAS  PubMed  Google Scholar 

  8. Richardson J, Gauert A, Briones Montecinos L, Fanlo L, Alhashem ZM, Assar R et al (2016) Leader cells define directionality of trunk, but not cranial, neural crest cell migration. Cell Rep 15:2076–2088. https://doi.org/10.1016/j.celrep.2016.04.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duffy JB (2002) GAL4 system indrosophila: a fly geneticist’s swiss army knife. Genesis 34:1–15. https://doi.org/10.1002/gene.10150

    Article  CAS  PubMed  Google Scholar 

  10. Distel M, Wullimann MF, Köster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106:13365–13370. https://doi.org/10.1073/pnas.0903060106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Collins RT, Linker C, Lewis J (2010) MAZe: a tool for mosaic analysis of gene function in zebrafish. Nat Methods 7:219–223. https://doi.org/10.1038/nmeth.1423

    Article  CAS  PubMed  Google Scholar 

  12. Gorelik R, Gautreau A (2014) Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 9:1931–1943. https://doi.org/10.1038/nprot.2014.131

    Article  CAS  PubMed  Google Scholar 

  13. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS et al (2007) The Tol2kit: a multisite gateway-based construction kit forTol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099. https://doi.org/10.1002/dvdy.21343

    Article  CAS  PubMed  Google Scholar 

  14. Chong-Morrison V, Simoes FC, Senanayake U, Carroll DS, Riley PR, Sauka-Spengler T (2018) Re-purposing Ac/Ds transgenic system for CRISPR/dCas9 modulation of enhancers and non-coding RNAs in zebrafish. BioRxiv 2018:450684. https://doi.org/10.1101/450684

  15. Gilmour DT, Maischein H-M, Nüsslein-Volhard C (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34:577–588. https://doi.org/10.1016/S0896-6273(02)00683-9

    Article  CAS  PubMed  Google Scholar 

  16. Hochgreb-Hägele T, Bronner ME (2013) A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification. Dev Biol 374:1–11. https://doi.org/10.1016/j.ydbio.2012.11.035

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J et al (2016) A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351:aad2197. https://doi.org/10.1126/science.aad2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffman TL, Javier AL, Campeau SA, Knight RD, Schilling TF (2007) Tfap2 transcription factors in zebrafish neural crest development and ectodermal evolution. J Exp Zoolog B Mol Dev Evol 308B:679–691. https://doi.org/10.1002/jez.b.21189

    Article  CAS  Google Scholar 

  19. Dutton JR, Antonellis A, Carney TJ, Rodrigues FS, Pavan WJ, Ward A et al (2008) An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Dev Biol 8:105. https://doi.org/10.1186/1471-213X-8-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das A, Crump JG (2012) Bmps and Id2a act upstream of Twist1 to restrict Ectomesenchyme potential of the cranial neural crest. PLoS Genet 8:e1002710. https://doi.org/10.1371/journal.pgen.1002710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blasky AJ, Pan L, Moens CB, Appel B (2014) Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination: PARD3 IN NC MIGRATION AND SCHWANN CELL MYELINATION. Dev Dyn 243:1511–1523. https://doi.org/10.1002/dvdy.24172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Askary A, Mork L, Paul S, He X, Izuhara AK, Gopalakrishnan S et al (2015) Iroquois proteins promote skeletal joint formation by maintaining chondrocytes in an immature state. Dev Cell 35:358–365. https://doi.org/10.1016/j.devcel.2015.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schilling TF, Pabic PL, Hoffman TL (2010) Using transgenic zebrafish (Danio rerio) to study development of the craniofacial skeleton. J Appl Ichthyol 26:183–186. https://doi.org/10.1111/j.1439-0426.2010.01401.x

    Article  Google Scholar 

  24. Smith CJ, Morris AD, Welsh TG, Kucenas S (2014) Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone. PLoS Biol 12:e1001961. https://doi.org/10.1371/journal.pbio.1001961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kucenas S, Takada N, Park H-C, Woodruff E, Broadie K, Appel B (2008) CNS-derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11:143–151. https://doi.org/10.1038/nn2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R et al (2013) Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development 140:76–81. https://doi.org/10.1242/dev.080473

    Article  CAS  PubMed  Google Scholar 

  27. Prendergast A, Linbo TH, Swarts T, Ungos JM, McGraw HF, Krispin S et al (2012) The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development 139:1141–1152. https://doi.org/10.1242/dev.072439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balczerski B, Matsutani M, Castillo P, Osborne N, Stainier DYR, Crump JG (2012) Analysis of Sphingosine-1-phosphate signaling mutants reveals endodermal requirements for the growth but not dorsoventral patterning of jaw skeletal precursors. Dev Biol 362:230–241. https://doi.org/10.1016/j.ydbio.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  29. Chung A-Y, Kim P-S, Kim S, Kim E, Kim D, Jeong I et al (2013) Generation of demyelination models by targeted ablation of oligodendrocytes in the zebrafish CNS. Mol Cells 36:82–87. https://doi.org/10.1007/s10059-013-0087-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrigues FSLM, Doughton G, Yang B, Kelsh RN (2012) A novel transgenic line using the Cre-lox system to allow permanent lineage-labeling of the zebrafish neural crest. Genesis 50:750–757. https://doi.org/10.1002/dvg.22033

    Article  CAS  PubMed  Google Scholar 

  31. Mongera A, Singh AP, Levesque MP, Chen Y-Y, Konstantinidis P, Nusslein-Volhard C (2013) Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140:916–925. https://doi.org/10.1242/dev.091066

    Article  CAS  PubMed  Google Scholar 

  32. Scheer N, Riedl I, Warren JT, Kuwada JY, Campos-Ortega JA (2002) A quantitative analysis of the kinetics of Gal4 activator and effector gene expression in the zebrafish. Mech Dev 112:9–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are in debt to Nicolas Daudet for his help and support. The Linker lab has been supported by grants from the Wellcome Trust, Royal Society, and the Medical Research council. SH and LB are funded by ICM P09-015-F, DAAD 57220037 & 57168868, CORFO 16CTTS-66390, Fondecyt 1181823, FONDEF 19I10334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Linker .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Movie 1

MOVIE S1_resized (MOV 7547 kb)

Supplementary Movie 2

MOVIE S2_resized (MOV 1509 kb)

Supplementary Movie 3

MOVIE S3_resized (MOV 521 kb)

Supplementary Movie 4

Supp movie chapter 9 Linker (MOV 27240 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alhashem, Z. et al. (2021). Zebrafish Neural Crest: Lessons and Tools to Study In Vivo Cell Migration. In: Campbell, K., Theveneau, E. (eds) The Epithelial-to Mesenchymal Transition. Methods in Molecular Biology, vol 2179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0779-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0779-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0778-7

  • Online ISBN: 978-1-0716-0779-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics