Skip to main content

In Vivo Analysis of the Mesenchymal-to-Epithelial Transition During Chick Secondary Neurulation

  • Protocol
  • First Online:
The Epithelial-to Mesenchymal Transition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2179))

Abstract

The neural tube in amniotic embryos forms as a result of two consecutive events along the anteroposterior axis, referred to as primary and secondary neurulation (PN and SN). While PN involves the invagination of a sheet of epithelial cells, SN shapes the caudal neural tube through the mesenchymal-to-epithelial transition (MET) of neuromesodermal progenitors, followed by cavitation of the medullary cord. The technical difficulties in studying SN mainly involve the challenge of labeling and manipulating SN cells in vivo. Here we describe a new method to follow MET during SN in the chick embryo, combining early in ovo chick electroporation with in vivo time-lapse imaging. This procedure allows the cells undergoing SN to be manipulated in order to investigate the MET process, permitting their cell dynamics to be followed in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gouignard N, Andrieu C, Theveneau E (2018) Neural crest delamination and migration: looking forward to the next 150 years. Genesis 56(6–7):e23107. https://doi.org/10.1002/dvg.23107

    Article  PubMed  Google Scholar 

  2. Mayor R, Theveneau E (2013) The neural crest. Development 140(11):2247–2251. https://doi.org/10.1242/dev.091751

    Article  CAS  PubMed  Google Scholar 

  3. Theveneau E, Mayor R (2012) Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration. Wiley Interdiscip Rev Dev Biol 1(3):435–445. https://doi.org/10.1002/wdev.28

    Article  CAS  PubMed  Google Scholar 

  4. Harrington MJ, Hong E, Brewster R (2009) Comparative analysis of neurulation: first impressions do not count. Mol Reprod Dev 76(10):954–965. https://doi.org/10.1002/mrd.21085

    Article  CAS  PubMed  Google Scholar 

  5. Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev 121(10):1189–1197. https://doi.org/10.1016/j.mod.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  6. Smith JL, Schoenwolf GC (1987) Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat Rec 218(2):196–206. https://doi.org/10.1002/ar.1092180215

    Article  CAS  PubMed  Google Scholar 

  7. Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221(2):117–145. https://doi.org/10.1002/dvdy.1144

    Article  CAS  PubMed  Google Scholar 

  8. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ (2017) Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144(4):552–566. https://doi.org/10.1242/dev.145904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saitsu H, Shiota K (2008) Involvement of the axially condensed tail bud mesenchyme in normal and abnormal human posterior neural tube development. Congenit Anom (Kyoto) 48(1):1–6. https://doi.org/10.1111/j.1741-4520.2007.00178.x

    Article  Google Scholar 

  10. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 209(2):107–117. https://doi.org/10.1007/s00429-004-0421-2

    Article  Google Scholar 

  11. O’Rahilly R, Muller F (2002) The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65(4):162–170. https://doi.org/10.1002/tera.10007

    Article  CAS  PubMed  Google Scholar 

  12. O’Rahilly R, Muller F (1994) Neurulation in the normal human embryo. Ciba Found Symp 181:70–82; discussion 82–9

    PubMed  Google Scholar 

  13. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195(4):231–272. https://doi.org/10.1002/aja.1001950404

    Article  CAS  PubMed  Google Scholar 

  14. Rupp PA, Rongish BJ, Czirok A, Little CD (2003) Culturing of avian embryos for time-lapse imaging. Biotechniques 34(2):274–278. https://doi.org/10.2144/03342st01

    Article  CAS  PubMed  Google Scholar 

  15. Dady A, Havis E, Escriou V, Catala M, Duband JL (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34(39):13208–13221. https://doi.org/10.1523/JNEUROSCI.1850-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Criley BB (1969) Analysis of embryonic sources and mechanims of development of posterior levels of chick neural tubes. J Morphol 128(4):465–501. https://doi.org/10.1002/jmor.1051280406

    Article  CAS  PubMed  Google Scholar 

  17. Shum AS, Tang LS, Copp AJ, Roelink H (2010) Lack of motor neuron differentiation is an intrinsic property of the mouse secondary neural tube. Dev Dyn 239(12):3192–3203. https://doi.org/10.1002/dvdy.22457

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169(4):361–376. https://doi.org/10.1002/aja.1001690402

    Article  CAS  PubMed  Google Scholar 

  19. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48(1):21–31. https://doi.org/10.1002/tera.1420480106

    Article  CAS  PubMed  Google Scholar 

  20. Schoenwolf GC, Delongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158(1):43–63. https://doi.org/10.1002/aja.1001580106

    Article  CAS  PubMed  Google Scholar 

  21. Schoenwolf GC, Kelley RO (1980) Characterization of intercellular junctions in the caudal portion of the developing neural tube of the chick embryo. Am J Anat 158(1):29–41. https://doi.org/10.1002/aja.1001580105

    Article  CAS  PubMed  Google Scholar 

  22. Shimokita E, Takahashi Y (2011) Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Develop Growth Differ 53(3):401–410. https://doi.org/10.1111/j.1440-169X.2011.01260.x

    Article  Google Scholar 

  23. Catala M, Teillet MA, De Robertis EM, Le Douarin ML (1996) A spinal cord fate map in the avian embryo: while regressing, Hensen’s node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122(9):2599–2610

    CAS  PubMed  Google Scholar 

  24. Catala M, Teillet MA, Le Douarin NM (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51(1):51–65

    Article  CAS  Google Scholar 

  25. Le Douarin NM, Teillet MA, Catala M (1998) Neurulation in amniote vertebrates: a novel view deduced from the use of quail-chick chimeras. Int J Dev Biol 42(7):909–916

    PubMed  Google Scholar 

  26. Le Douarin NM (2001) Early neurogenesis in Amniote vertebrates. Int J Dev Biol 45(1):373–378

    PubMed  Google Scholar 

  27. Voiculescu O, Papanayotou C, Stern CD (2008) Spatially and temporally controlled electroporation of early chick embryos. Nat Protoc 3(3):419–426. https://doi.org/10.1038/nprot.2008.10

    Article  CAS  PubMed  Google Scholar 

  28. Hatakeyama J, Shimamura K (2008) Method for electroporation for the early chick embryo. Develop Growth Differ 50(6):449–452. https://doi.org/10.1111/j.1440-169X.2008.01040.x

    Article  CAS  Google Scholar 

  29. Chapman SC, Collignon J, Schoenwolf GC, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220(3):284–289. https://doi.org/10.1002/1097-0177(20010301)220:3<284::AID-DVDY1102>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  30. Benazeraf B, Beaupeux M, Tchernookov M, Wallingford A, Salisbury T, Shirtz A, Shirtz A, Huss D, Pourquie O, Francois P, Lansford R (2017) Multi-scale quantification of tissue behavior during amniote embryo axis elongation. Development 144(23):4462–4472. https://doi.org/10.1242/dev.150557

    Article  CAS  PubMed  Google Scholar 

  31. Benazeraf B, Francois P, Baker RE, Denans N, Little CD, Pourquie O (2010) A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466(7303):248–252. https://doi.org/10.1038/nature09151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saade M, Gutierrez-Vallejo I, Le Dreau G, Rabadan MA, Miguez DG, Buceta J, Marti E (2013) Sonic hedgehog signaling switches the mode of division in the developing nervous system. Cell Rep 4(3):492–503. https://doi.org/10.1016/j.celrep.2013.06.038

    Article  CAS  PubMed  Google Scholar 

  33. Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H (2003) Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4(4):509–519

    Article  CAS  Google Scholar 

  34. Le Dreau G, Saade M, Gutierrez-Vallejo I, Marti E (2014) The strength of SMAD1/5 activity determines the mode of stem cell division in the developing spinal cord. J Cell Biol 204(4):591–605. https://doi.org/10.1083/jcb.201307031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rios AC, Denans N, Marcelle C (2010) Real-time observation of Wnt beta-catenin signaling in the chick embryo. Dev Dyn 239(1):346–353. https://doi.org/10.1002/dvdy.22174

    Article  CAS  PubMed  Google Scholar 

  36. Serralbo O, Marcelle C (2014) Migrating cells mediate long-range WNT signaling. Development 141(10):2057–2063. https://doi.org/10.1242/dev.107656

    Article  CAS  PubMed  Google Scholar 

  37. Momose T, Tonegawa A, Takeuchi J, Ogawa H, Umesono K, Yasuda K (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Develop Growth Differ 41(3):335–344

    Article  CAS  Google Scholar 

  38. Yasuda K, Momose T, Takahashi Y (2000) Applications of microelectroporation for studies of chick embryogenesis. Develop Growth Differ 42(3):203–206

    Article  CAS  Google Scholar 

  39. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  41. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782. https://doi.org/10.1083/jcb.201004104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41. https://doi.org/10.1109/83.650848

    Article  CAS  PubMed  Google Scholar 

  43. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11):1463–1465. https://doi.org/10.1093/bioinformatics/btp184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Martí .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Movie S1

In vivo time-lapse imaging of a WT chick embryo (5×) over 10 h showing normal tail bud elongation and blood vessel formation (hh:mm). Related to Fig. 4 (MOV 7547 kb)

Movie S2

In vivo time-lapse imaging of a pSox2:eGFP electroporated embryo (20×) over 10 h. Related to Fig. 5 (MOV 1509 kb)

Movie S3

In vivo time-lapse imaging of a pSox2:eGFP electroporated embryo showing the tracks obtained using the Manual Tracking plugin of the ImageJ software. Related to Fig. 5 (MOV 521 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Gobartt, E., Allio, G., Bénazéraf, B., Martí, E. (2021). In Vivo Analysis of the Mesenchymal-to-Epithelial Transition During Chick Secondary Neurulation. In: Campbell, K., Theveneau, E. (eds) The Epithelial-to Mesenchymal Transition. Methods in Molecular Biology, vol 2179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0779-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0779-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0778-7

  • Online ISBN: 978-1-0716-0779-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics