Abstract
G-protein-coupled receptors (GPCRs) are integral proteins of the cell membrane and are directly involved in the regulation of many biological functions and in drug targeting. However, our knowledge of GPCRs’ structure and function remains limited. The first bottleneck in GPCR studies is producing sufficient quantities of soluble, functional, and stable receptors. Currently, GPCR production largely depends on the choice of the host system and the type of detergent used to extract the GPCR from the cell membrane and stabilize the protein outside the membrane bilayer. Here, we present three protocols that we employ in our lab to produce and solubilize stable GPCRs: (1) cell-free in vitro translation, (2) HEK cells, and (3) Escherichia coli. Stable receptors can be purified using immunoaffinity chromatography and gel filtration, and can be analyzed with standard biophysical techniques and biochemical assays.
Key words
- G-protein-coupled receptor (GPCR )
- Olfactory receptors, membrane proteins
- Detergents
- Surfactants
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:928–944
Lundstrom K (2005) Structural biology of G protein-coupled receptors. Bioorg Med Chem Lett 15:3654–3657
Protein Data Bank (2019). http://www.rcsb.org
Membrane Proteins of Known Structure run by the Stephen White Laboratory at UCI (2018). http://blanco.biomol.uci.edu/mpstruc/
Jaakola V-P et al (2008) The 2.6 Å crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217
Rasmussen SGF et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387
Warne T et al (2008) Structure of a β1-adrenergic G protein-coupled receptor. Nature 454(7203):486–491
Wu B et al (2010) Structures of the CXCR4 chemokine receptor in complex with small molecule and cyclic peptide antagonists. Science 330(6007):1066–1071
Shimamura T et al (2012) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70
Hanson MA et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335(6070):851–855
Kruse AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556
Wu H et al (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature 485(7398):327–332
Manglik A et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326
Granier S et al (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485:400–404
Thompson AA et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399
Zhang C et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392
Tan Q et al (2013) Structure of the CCR5 chemokine receptor—HIV entry inhibitor Maraviroc complex. Science 341(6152):1387–1390
Wang C et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343
Wang C et al (2013b) Structural basis for molecular recognition at seratonin receptors. Science 340(6132):610–614
Siu FY et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459):444–449
Burg JS et al (2015) Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347(6226):1113–1117
Fenalti G et al (2014) Molecular control of d-opioid receptor signalling. Nature 506(7487):191–196
Thal DM et al (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531(7594):335–340
Yin J, Mobarec JC, Kolb P, Rosenbaum DM (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519(7542):247–250
Yin J et al (2016) Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol 23(4):293–299
Shihoya W et al (2016) Activation mechanism of the endothelin ETB receptor by endothelin-1. Nature 537(7620):363–368
Hua T et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:750–762
Wacker D et al (2013) Structural features for functional selectivity at seratonin receptors. Science 340(6132):615–619
Hollenstein K et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443
Geng Y, Bush M, Mosyak L, Wang F, Fan QR (2013) Structural mechanism of ligand activation in human GABAB receptor. Nature 504(7479):254–259
Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64
Doré AS et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511(7511):557–562
Chrencik JE et al (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643
Zhang H et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844
Byrne EFX et al (2016) Structural basis of smoothened regulation by its extracellular domains. Nature 535(7613):517–522
Chien YET et al (2010) Structure of the human dopamine D3 receptor in comlex with a D2/D3 selective antagonist. Science 330(6007):1091–1095
White JF et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513
Zhang K et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115–118
Zhang D et al (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520(7547):317–321
Srivastava A et al (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513(7516):124–127
Haga K et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482(7386):547–551
Cherezov V et al (2007) High resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265
Klammt C, Schwarz D, Eifler N et al (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 158:482–493
Reeves PJ, Thurmond RL, Khorana HG (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A 93:11487–11492
Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298
Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376
Hampe W, Voss RH, Haase W et al (2000) Engineering of a proteolytically stable human beta(2)-adrenergic receptor/maltose-binding protein fusion and production of the chimeric protein in Escherichia coli and baculovirus infected insect cells. J Biotechnol 77:219–234
Mouillac B, Caron M, Bonin H et al (1992) Agonist-modulated palmitoylation of b2-adrenergic receptor in Sf9 cells. J Biol Chem 267:21733–21737
Panneels V, Sinning I (2010) Membrane protein expression in the eyes of transgenic flies. Methods Mol Biol 601:135–147
Zhang L, Salom D, He JH et al (2005) Expression of functional G protein-coupled receptors in photoreceptors of transgenic Xenopus laevis. Biochemistry 44:14509–14518
Li N, Salom D, Zhang L et al (2007) Heterologous expression of the adenosine A1 receptor in transgenic mouse retina. Biochemistry 46:8350–8359
Sarramegna V, Muller I, Mousseau G et al (2005) Solubilization, purification and mass spectrometry analysis of the human mu-opioid receptor expressed in Pichia pastoris. Protein Expr Purif 43:85–93
Dowell SJ, Brown AJ (2002) Yeast assays for G-protein coupled receptors. Receptors Channels 8:343–352
Grisshammer R, Duckworth R, Henderson R (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 295:571–576
Sarramegna V, Talmont F, Demange P et al (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546
McCusker EC, Bane SE, O’Malley MA et al (2007) Heterologous GPCR expression: A bottleneck to obtaining crystal structures. Biotechnol Prog 23:540–547
Tate CG, Grisshammer R (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol 14:426–430
Ishihara G, Goto M, Saeki M et al (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expres Purif 41:27–37
Corin K, Baaske P, Ravel DB et al (2011) A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors. PLoS One 6:e23036
Corin K, Baaske P, Ravel DB et al (2011) Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One 6:e25067
Wang XQ, Corin K, Baaske P et al (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci U S A 108:9049–9054
Koutsopoulos S, Kaiser L, Eriksson HM et al (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728
Ren H, Yu D, Ge B et al (2009) High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS One 4:e4509
Gubellini F, Verdon G, Karpowich NK et al (2011) Physiological response to membrane protein overexpression in E. coli. Mol Cell Proteomics 10:1–17
King K, Dohlman HG, Thorner J et al (1990) Control of yeast mating signal transduction by a mammalian beta-2-adrenergic receptor and Gs alpha-subunit. Science 250:121–123
Corin K, Baaske P, Geissler S et al (2011) Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep 1:172
Corin K, Pick H, Baaske P et al (2012) Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs. Mol BioSyst 8:1750–1759
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Corin, K., Tegler, L.T., Koutsopoulos, S. (2021). G-Protein-Coupled Receptor Expression and Purification. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_28
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0775-6_28
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0774-9
Online ISBN: 978-1-0716-0775-6
eBook Packages: Springer Protocols