Skip to main content

Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).

In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.

Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68. https://doi.org/10.1016/0168-1176(87)87041-6

    Article  CAS  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. https://doi.org/10.1126/science.2675315

  3. Ortea I, O’Connor G, Maquet A (2016) Review on proteomics for food authentication. J Proteome 147:212–225. https://doi.org/10.1016/J.JPROT.2016.06.033

    Article  CAS  Google Scholar 

  4. Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A (2018) Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 15:683–696. https://doi.org/10.1080/14789450.2018.1505510

    Article  CAS  Google Scholar 

  5. Leopold J, Popkova Y, Engel KM, Schiller J (2018) Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomol Ther 8:1–25. https://doi.org/10.3390/biom8040173

  6. Calvano CD, Picca RA, Bonerba E, Tantillo G, Cioffi N, Palmisano F (2016) MALDI-TOF mass spectrometry analysis of proteins and lipids in Escherichia coli exposed to copper ions and nanoparticles. J Mass Spectrom 51:828–840. https://doi.org/10.1002/jms.3823

    Article  CAS  Google Scholar 

  7. Yoshimura Y, Goto-Inoue N, Moriyama T, Zaima N (2016) Significant advancement of mass spectrometry imaging for food chemistry. Food Chem 210:200–211. https://doi.org/10.1016/j.foodchem.2016.04.096

    Article  CAS  Google Scholar 

  8. Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H (2018) Ambient mass spectrometry for food science and industry. TrAC Trends Anal Chem 107:99–115. https://doi.org/10.1016/J.TRAC.2018.07.017

    Article  CAS  Google Scholar 

  9. Calvano CD, Ventura G, Cataldi TRI, Palmisano F (2015) Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix. Anal Bioanal Chem 407:6369–6379. https://doi.org/10.1007/s00216-015-8728-9

    Article  CAS  Google Scholar 

  10. Calvano CD, Ventura G, Trotta M, Bianco G, Cataldi TRI, Palmisano F (2017) Electron-transfer secondary reaction matrices for MALDI MS analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and its zinc and copper analogue pigments. J Am Soc Mass Spectrom 28:125–135. https://doi.org/10.1007/s13361-016-1514-x

    Article  CAS  Google Scholar 

  11. Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J (2017) Structural characterization of neutral saccharides by negative ion MALDI mass spectrometry using a superbasic proton sponge as deprotonating matrix. J Am Soc Mass Spectrom 28:1666–1675. https://doi.org/10.1007/s13361-017-1679-y

    Article  CAS  Google Scholar 

  12. Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J (2016) Superbasic alkyl-substituted bisphosphazene proton sponges: a new class of deprotonating matrices for negative ion matrix-assisted ionization/laser desorption mass spectrometry of low molecular weight hardly ionizable analytes. Rapid Commun Mass Spectrom 30:1680–1686. https://doi.org/10.1002/rcm.7604

    Article  CAS  Google Scholar 

  13. Korte AR, Lee Y-J (2014) MALDI-MS analysis and imaging of smallmolecule metabolites with 1,5-diaminonaphthalene (DAN). J Mass Spectrom 49:737–741. https://doi.org/10.1002/jms.3400

    Article  CAS  Google Scholar 

  14. Monopoli A, Calvano CD, Nacci A, Palmisano F (2014) Boronic acid chemistry in MALDI MS: a step forward in designing a reactive matrix with molecular recognition capabilities. Chem Commun 50:4322. https://doi.org/10.1039/c4cc01185f

    Article  CAS  Google Scholar 

  15. Qi Y, Müller M, Stokes CS, Volmer DA (2018) Rapid quantification of 25-hydroxyvitamin D3 in human serum by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 29:1456–1462. https://doi.org/10.1007/s13361-018-1956-4

    Article  CAS  Google Scholar 

  16. Calvano CD, Ventura G, Palmisano F, Cataldi TRI (2016) 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). J Mass Spectrom 51:841–848. https://doi.org/10.1002/jms.3817

    Article  CAS  Google Scholar 

  17. Corinti D, Crestoni ME, Fornarini S, Pieper M, Niehaus K, Giampà M (2019) An integrated approach to study novel properties of a MALDI matrix (4-maleicanhydridoproton sponge) for MS imaging analyses. Anal Bioanal Chem 411:953–964. https://doi.org/10.1007/s00216-018-1531-7

    Article  CAS  Google Scholar 

  18. Calvano CD, Monopoli A, Cataldi TRI, Palmisano F (2018) MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 410:4015–4038. https://doi.org/10.1007/s00216-018-1014-x

  19. Božik M, Cejnar P, Šašková M, Nový P, Maršík P, Klouček P (2018) Stress response of Escherichia coli to essential oil components-insights on low-molecular-weight proteins from MALDI-TOF. Sci Rep 8:13042. https://doi.org/10.1038/s41598-018-31255-2

    Article  CAS  Google Scholar 

  20. Jagadeesh DS, Kannugundla U, Reddy RK (2017) Application of proteomic tools in food quality and safety. Adv Anim Vet Sci 5:213. https://doi.org/10.17582/journal.aavs/2017/5.5.213.225

  21. Gallardo JM, Ortea I, Carrera M (2013) Proteomics and its applications for food authentication and food-technology research. TrAC Trends Anal Chem 52:135–141. https://doi.org/10.1016/J.TRAC.2013.05.019

    Article  CAS  Google Scholar 

  22. de Koster CG (2016) MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens. Curr Opin Food Sci 10:76–84. https://doi.org/10.1016/J.COFS.2016.11.004

    Article  Google Scholar 

  23. De Ceglie C, Calvano CD, Zambonin CG (2014) Determination of hidden hazelnut oil proteins in extra virgin olive oil by cold acetone precipitation followed by in-solution Tryptic digestion and MALDI-TOF-MS analysis. J Agric Food Chem 62:9401–9409. https://doi.org/10.1021/jf504007d

    Article  CAS  Google Scholar 

  24. Ocaña MF, Fraser PD, Patel RKP, Halket JM, Bramley PM (2007) Mass spectrometric detection of CP4 EPSPS in genetically modified soya and maize. Rapid Commun Mass Spectrom 21:319–328. https://doi.org/10.1002/rcm.2819

    Article  CAS  Google Scholar 

  25. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A (2018) Diagnostic accuracy, risk assessment, and cost-effectiveness of component-resolved diagnostics for food allergy: A systematic review. Allergy 73:1609–1621. https://doi.org/10.1111/all.13399

    Article  CAS  Google Scholar 

  26. Koeberl M, Clarke D, Lopata AL (2014) Next generation of food allergen quantification using mass spectrometric systems. J Proteome Res 13:3499–3509. https://doi.org/10.1021/pr500247r

  27. Hoffmann-Sommergruber K (2016) Proteomics and its impact on food allergy diagnosis. EuPA Open Proteom 12:10–12. https://doi.org/10.1016/j.euprot.2016.03.016

    Article  CAS  Google Scholar 

  28. Palladino C, Narzt MS, Bublin M, Schreiner M et al (2018) Peanut lipids display potential adjuvanticity by triggering a pro-inflammatory response in human keratinocytes. Allergy 73:1746–1749. https://doi.org/10.1111/all.13475

    Article  CAS  Google Scholar 

  29. Ho MH-K, Wong WH-S, Chang C (2014) Clinical spectrum of food allergies: a comprehensive review. Clin Rev Allergy Immunol 46:225–240. https://doi.org/10.1007/s12016-012-8339-6

    Article  CAS  Google Scholar 

  30. Asensio L, González I, García T, Martín R (2008) Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 19:1–8. https://doi.org/10.1016/J.FOODCONT.2007.02.010

    Article  CAS  Google Scholar 

  31. Scaravelli E, Brohée M, Marchelli R, van Hengel AJ (2009) The effect of heat treatment on the detection of peanut allergens as determined by ELISA and real-time PCR. Anal Bioanal Chem 395:127–137. https://doi.org/10.1007/s00216-009-2849-y

    Article  CAS  Google Scholar 

  32. Downs ML, Taylor SL (2010) Effects of thermal processing on the enzyme-linked Immunosorbent assay (ELISA) detection of milk residues in a model food matrix. J Agric Food Chem 58:10085–10091. https://doi.org/10.1021/jf101718f

    Article  CAS  Google Scholar 

  33. Fu T-J, Maks N (2013) Impact of thermal processing on ELISA detection of peanut allergens. J Agric Food Chem 61:5649–5658. https://doi.org/10.1021/jf304920h

    Article  CAS  Google Scholar 

  34. Monaci L, Brohée M, Tregoat V, van Hengel A (2011) Influence of baking time and matrix effects on the detection of milk allergens in cookie model food system by ELISA. Food Chem 127:669–675. https://doi.org/10.1016/J.FOODCHEM.2010.12.113

    Article  CAS  Google Scholar 

  35. Brockmeyer J (2018) Novel approaches for the MS-based detection of food allergens: high resolution, MS3, and beyond. J AOAC Int 101:124–131. https://doi.org/10.5740/jaoacint.17-0402

    Article  CAS  Google Scholar 

  36. Mélanie Planque TA, Gillard N (2018) Food allergen analysis: detection, quantification and validation by mass spectrometry Allergen, vol 2. Intech open, London, pp 8–41. https://doi.org/10.5772/32009

    Book  Google Scholar 

  37. Calvano CD, Monopoli A, Loizzo P, Faccia M, Zambonin C (2013) Proteomic approach based on MALDI-TOF MS to detect powdered Milk in fresh Cow’s Milk. J Agric Food Chem 61:1609–1617. https://doi.org/10.1021/jf302999s

    Article  CAS  Google Scholar 

  38. Calvano CD, De Ceglie C, Monopoli A, Zambonin CG (2012) Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests. J Mass Spectrom 47:1141–1149. https://doi.org/10.1002/jms.2995

    Article  CAS  Google Scholar 

  39. Monaci L, De Angelis E, Montemurro N, Pilolli R (2018) Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC, Trends Analyt Chem 106:21–36. https://doi.org/10.1016/j.trac.2018.06.016

    Article  CAS  Google Scholar 

  40. Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. Chapter 10:Unit 10.25. https://doi.org/10.1002/0471142727.mb1025s88

  41. Monaci L, Tregoat V, van Hengel AJ, Anklam E (2006) Milk allergens, their characteristics and their detection in food: a review. Eur Food Res Technol 223:149–179. https://doi.org/10.1007/s00217-005-0178-8

    Article  CAS  Google Scholar 

  42. Urisu A, Kondo Y, Tsuge I (2015) Hen’s Egg Allergy. Chem Immunol Allergy 101:124–130. https://doi.org/10.1159/000375416

    Article  CAS  Google Scholar 

  43. Holzhauser T (2018) Protein or no protein. Opportunities for DNA-based detection of allergenic foods. J Agric Food Chem 66(38):9889–9894. https://doi.org/10.1021/acs.jafc.8b03657

    Article  CAS  Google Scholar 

  44. Lauer I, Foetisch K, Kolarich D, Ballmer-Weber BK, Conti A, Altmann F, Vieths S, Scheurer S (2004) Hazelnut (Corylus avellana) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity. Biochem J 383:327–334. https://doi.org/10.1042/BJ20041062

    Article  CAS  Google Scholar 

  45. Guillamón E, Rodríguez J, Burbano C, Muzquiz M, Pedrosa MM, Cabanillas B, Crespo JF, Sancho AI, Mills ENC, Cuadrado C (2010) Characterization of lupin major allergens (Lupinus albus L.). Mol Nutr Food Res 54:1668–1676. https://doi.org/10.1002/mnfr.200900452

    Article  CAS  Google Scholar 

  46. Mattarozzi M, Bignardi C, Elviri L, Careri M (2012) Rapid shotgun proteomic liquid chromatography-electrospray ionization-tandem mass spectrometry-based method for the lupin (Lupinus albus L.) multi-allergen determination in foods. J Agric Food Chem 60:5841–5846. https://doi.org/10.1021/jf302105r

    Article  CAS  Google Scholar 

  47. Gallagher SR (2007) One-dimensional SDS gel electrophoresis of proteins. In: Current protocols in toxicology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 1–38. https://doi.org/10.1002/0471140864.ps1001s68

  48. Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  Google Scholar 

  49. León IR, Schwämmle V, Jensen ON, Sprenger RR (2013) Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol Cell Proteomics 12:2992–3005. https://doi.org/10.1074/mcp.M112.025585

    Article  CAS  Google Scholar 

  50. Roepstorff P, Fohlman J (1984) Letter to the editors. Biol Mass Spectrom 11:601–601. https://doi.org/10.1002/bms.1200111109

    Article  CAS  Google Scholar 

  51. Mohammadi M, Xu C-F, Neubert TA, Ma J, Lu Y (2005) Identification of Phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification. Mol Cell Proteomics 4:809–818. https://doi.org/10.1074/mcp.t400019-mcp200

    Article  Google Scholar 

  52. Labrou NE (2014) Protein purification: an overview. In: Methods in molecular biology (Clifton, N.J.). Humana Press, Inc, Totowa, New Jersey, pp 3–10. https://doi.org/10.1007/978-1-62703-977-2_1

Download references

Acknowledgments

This work was supported by Progetto di Ricerca di Interesse Nazionale—PRIN 2017YER72K—“Development of novel DNA-based analytical platforms for the rapid, point-of-use quantification of multiple hidden allergens in food samples.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosima D. Calvano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calvano, C.D., Bianco, M., Losito, I., Cataldi, T.R.I. (2021). Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics