Skip to main content

Protein Purification Technologies

Part of the Methods in Molecular Biology book series (MIMB,volume 2178)

Abstract

Protein Biotechnology is an exciting and fast- growing area of research, with numerous industrial applications. The growing demand for developing efficient and rapid protein purification methods is driving research and growth in this area. Advances and progress in the techniques and methods of protein purification have been such that one can reasonably expect that any protein of a given order of stability may be purified to currently acceptable standards of homogeneity. However, protein manufacturing cost remains extremely high, with downstream processing constituting a substantial proportion of the overall cost. Understanding of the methods and optimization of the experimental conditions have become critical to the manufacturing industry in order to minimize production costs while satisfying the quality as well as all regulatory requirements. New purification processes exploiting specific, effective and robust methods and chromatographic materials are expected to guide the future of the protein purification market.

Key words

  • Chromatography
  • Downstream processing
  • Protein purification
  • Protein manufacturing
  • quality and safety

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0775-6_1
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0775-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shendure J, Lieberman AE (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    CrossRef  CAS  Google Scholar 

  2. Ing-Simmons E, Vaquerizas JM (2019) Visualising three-dimensional genome organisation in two dimensions. Development 146(19):pii: dev177162

    CrossRef  CAS  Google Scholar 

  3. Beigh MM (2016) Next-generation sequencing: the translational medicine approach from “bench to bedside to population”. Medicines (Basel) 3(2):14. https://doi.org/10.3390/medicines3020014

    CrossRef  CAS  Google Scholar 

  4. Park ST, Kim J (2016) Trends in next-generation sequencing and a new era for whole genome sequencing. Int Neurourol J 20(Suppl 2):S76–S83

    CrossRef  Google Scholar 

  5. Henry RJ, Edwards M, Waters DL et al (2012) Application of large-scale sequencing to marker discovery in plants. J Biosci 37:829–841

    CrossRef  CAS  Google Scholar 

  6. Vaudel M, Sickmann A, Martens L (2012) Current methods for global proteome identification. Expert Rev Proteomics 9:519–532

    CrossRef  CAS  Google Scholar 

  7. Marichal-Gallardo PA, Alvarez MM (2012) State-of-the-art in downstream processing of monoclonal antibodies: process trends in design and validation. Biotechnol Prog 28:899–916

    CrossRef  CAS  Google Scholar 

  8. Kalyanpur M (2002) Downstream processing in the biotechnology industry. Mol Biotechnol 22:87–98

    CrossRef  CAS  Google Scholar 

  9. Łojewska E, Kowalczyk T, Olejniczak S, Sakowicz T (2016) Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expr Purif 2016(120):110–117

    CrossRef  CAS  Google Scholar 

  10. Owczarek B, Gerszberg A, Hnatuszko-Konka K (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. Biomed Res Int 2019:4216060

    CrossRef  CAS  Google Scholar 

  11. Schiermeyer A (2019) Optimizing product quality in molecular farming. Curr Opin Biotechnol 4(61):15–20

    Google Scholar 

  12. Gervais D (2019) Quality control and downstream processing of therapeutic enzymes. Adv Exp Med Biol 1148:55–80

    CrossRef  CAS  Google Scholar 

  13. Taipa MÂ, Fernandes P, de Carvalho CCCR (2019) Production and purification of therapeutic enzymes. Adv Exp Med Biol 1148:1–24

    CrossRef  CAS  Google Scholar 

  14. Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H (2019) Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 1(95):73–90

    CrossRef  CAS  Google Scholar 

  15. Shekhawat LK, Rathore AS (2019) An overview of mechanistic modeling of liquid chromatography. Prep Biochem Biotechnol 49:623–638

    CrossRef  CAS  Google Scholar 

  16. Oliveira C, Domingues L (2018) Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 102:81–92

    CrossRef  CAS  Google Scholar 

  17. Jacquemart R, Vandersluis M, Zhao M, Sukhija K, Sidhu N, Stout J (2016) A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J 5(14):309–318

    CrossRef  CAS  Google Scholar 

  18. Steinebach F, Müller-Späth T, Morbidelli M (2016) Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol J 11:1126–1141

    CrossRef  CAS  Google Scholar 

  19. Kallberg K, Johansson HO, Bulow L (2012) Multimodal chromatography: an efficient tool in downstream processing of proteins. Biotechnol J 7:1485–1495

    CrossRef  CAS  Google Scholar 

  20. Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold Publishing, New York, NY

    CrossRef  Google Scholar 

  21. Lucy CA (2003) Evolution of ion-exchange: from Moses to the Manhattan Project to modern times. J Chromatogr A 1000:711–724

    CrossRef  CAS  Google Scholar 

  22. Starkenstein E (1910) Ferment action and the influence upon it of neutral salts. Biochem Z 24:210–218

    CAS  Google Scholar 

  23. Cuatrecasas P, Wilcheck M, Anfinsen CB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A 61:636–643

    CrossRef  CAS  Google Scholar 

  24. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894

    CrossRef  CAS  Google Scholar 

  25. Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30:419–433

    CrossRef  CAS  Google Scholar 

  26. Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38:1209–1231

    CrossRef  CAS  Google Scholar 

  27. McQueen L, Lai D (2019) Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. Front Chem 7:135

    CrossRef  CAS  Google Scholar 

  28. Li Y (2019) The application of caprylic acid in downstream processing of monoclonal antibodies. Protein Expr Purif 153:92–96

    CrossRef  CAS  Google Scholar 

  29. Wong FWF, Ariff AB, Stuckey DC (2018) Downstream protein separation by surfactant precipitation: a review. Crit Rev Biotechnol 38:31–46

    CrossRef  CAS  Google Scholar 

  30. Rosa PA, Azevedo AM, Sommerfeld S et al (2011) Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability. Biotechnol Adv 29:559–567

    CrossRef  CAS  Google Scholar 

  31. Chon JH, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. Nat Biotechnol 28:458–463

    CAS  Google Scholar 

  32. Freitag R, Horváth C (1996) Chromatography in the downstream processing of biotechnological products. Adv Biochem Eng Biotechnol 53:17–59

    CAS  Google Scholar 

  33. Ramos-de-la-Peña AM, González-Valdez J, Aguilar O (2019) Protein A chromatography: challenges and progress in the purification of monoclonal antibodies. J Sep Sci 42:1816–1827

    CrossRef  CAS  Google Scholar 

  34. Arora S, Saxena V, Ayyar BV (2017) Affinity chromatography: a versatile technique for antibody purification. Methods 1(116):84–94

    CrossRef  CAS  Google Scholar 

  35. Singh N, Herzer S (2018) Downstream processing technologies/capturing and final purification: opportunities for innovation, change, and improvement. A review of downstream processing developments in protein purification. Adv Biochem Eng Biotechnol 165:115–178

    CAS  Google Scholar 

  36. Kruljec N, Bratkovič T (2017) Alternative affinity ligands for immunoglobulins. Bioconjug Chem 28:2009–2030

    CrossRef  CAS  Google Scholar 

  37. Fang YM, Lin DQ, Yao SJ (2018) Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 1571:1–15

    CrossRef  CAS  Google Scholar 

  38. Burgess RR (2018) A brief practical review of size exclusion chromatography: rules of thumb, limitations, and troubleshooting. Protein Expr Purif 150:81–85

    CrossRef  CAS  Google Scholar 

  39. Rathore AS, Kumar D, Kateja N (2018) Recent developments in chromatographic purification of biopharmaceuticals. Biotechnol Lett 40:895–905

    CrossRef  CAS  Google Scholar 

  40. Perret G, Santambien P, Boschetti E (2015) The quest for affinity chromatography ligands: are the molecular libraries the right source? J Sep Sci 38:2559–2572

    CrossRef  CAS  Google Scholar 

  41. Roque AC, Silva CS, Taipa MA (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 1160:44–55

    CrossRef  CAS  Google Scholar 

  42. Labrou NE (2003) Design and selection of ligands for affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 790:67–78

    CrossRef  CAS  Google Scholar 

  43. Clonis YD (2006) Affinity chromatography matures as bioinformatic and combinatorial tools develop. J Chromatogr A 1101:1–24

    CrossRef  CAS  Google Scholar 

  44. Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24:496–503

    CrossRef  CAS  Google Scholar 

  45. Maltezos A, Platis D, Vlachakis D, Kossida S, Marinou M, Labrou NE (2014) Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn. J Mol Recognit 27:19–31

    CrossRef  CAS  Google Scholar 

  46. Marinou M, Platis D, Ataya FS, Chronopoulou E, Vlachakis D, Labrou NE (2018) Structure-based design and application of a nucleotide coenzyme mimetic ligand: application to the affinity purification of nucleotide dependent enzymes. J Chromatogr A 1535:88–100

    CrossRef  CAS  Google Scholar 

  47. Dias AM, Roque AC (2017) The future of protein scaffolds as affinity reagents for purification. Biotechnol Bioeng 114:481–491

    CrossRef  CAS  Google Scholar 

  48. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80:6.1.1–6.135

    CrossRef  Google Scholar 

  49. Rasmussen SK, Næsted H, Müller C et al (2012) Recombinant antibody mixtures: production strategies and cost considerations. Arch Biochem Biophys 526:139–145

    CrossRef  CAS  Google Scholar 

  50. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 5:443–452

    CrossRef  Google Scholar 

  51. Dranitsaris G, Amir E, Dorward K (2011) Biosimilars of biological drug therapies: regulatory, clinical and commercial considerations. Drugs 71:1527–1536

    CrossRef  CAS  Google Scholar 

  52. Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8:845–861

    CrossRef  Google Scholar 

  53. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    CrossRef  CAS  Google Scholar 

  54. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107

    CrossRef  CAS  Google Scholar 

  55. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    CrossRef  CAS  Google Scholar 

  56. Cabanne C, Santarelli X (2019) Mixed mode chromatography, complex development for large opportunities. Curr Protein Pept Sci 20:22–27

    CrossRef  CAS  Google Scholar 

  57. Santarelli X, Cabanne C (2019) Mixed mode chromatography: a novel way toward new selectivity. Curr Protein Pept Sci 20:14–21

    CrossRef  CAS  Google Scholar 

  58. Arakawa T (2019) Review on the application of mixed-mode chromatography for separation of structure isoforms. Curr Protein Pept Sci 20:56–60

    CrossRef  CAS  Google Scholar 

  59. Zhang K, Liu X (2016) Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharm Biomed Anal 5(128):73–88

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant AlgaCeuticals funded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos E. Labrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Labrou, N.E. (2021). Protein Purification Technologies. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols