Skip to main content

Biomimetic Affinity Ligands for Protein Purification

  • 1157 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2178)

Abstract

The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins, and are designated as “biomimetic ligands”. A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogs of amino acid side chains to create molecular diversity.

Triazine-based synthetic ligands are nontoxic, low-cost, and highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

Key words

  • Affinity
  • Biomimetic
  • Triazine-scaffolded ligands
  • Design
  • Combinatorial synthesis
  • Screening
  • Protein purification

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0775-6_14
  • Chapter length: 33 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0775-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lowe CR, Burton SJ, Burton NP et al (1992) Designer dyes—biomimetic ligands for the purification of pharmaceutical proteins by affinity-chromatography. Trends Biotechnol 10:442–448

    CrossRef  CAS  Google Scholar 

  2. Roque ACA, Silva CSO, Taipa MA (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 1160:44–55

    CrossRef  CAS  Google Scholar 

  3. Lowe CR, Lowe AR, Gupta G (2001) New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J Biochem Bioph Meth 49:561–574

    CrossRef  CAS  Google Scholar 

  4. Lowe CR (2001) Combinatorial approaches to affinity chromatography. Curr Opin Chem Biol 5:248–256

    CrossRef  CAS  Google Scholar 

  5. Haeckel R, Hess B, Lauterbo W et al (1968) Purification and allosteric properities of yeast pyruvate kinase. H-S Z Physiol Chem 349:699–714

    CrossRef  CAS  Google Scholar 

  6. Garg N, Galaev IY, Mattiasson B (1996) Dye-affinity techniques for bioprocessing: recent developments. J Mol Recognit 9:259–274

    CrossRef  CAS  Google Scholar 

  7. Clonis YD, Labrou NE, Kotsira VP et al (2000) Biomimetic dyes as affinity chromatography tools in enzyme purification. J Chromatogr A 891:33–44

    CrossRef  CAS  Google Scholar 

  8. Lowik DWPM, Lowe CR (2000) A stepwise synthesis of triazine-based macrocyclic scaffolds. Tetrahedron Lett 41:1837–1840

    CrossRef  CAS  Google Scholar 

  9. Kim JYH, Lee JW, Lee WS et al (2012) Combinatorial solid-phase synthesis of 4,6-diaryl and 4-aryl, 6-alkyl-1,3,5-triazines and their application to efficient biofuel production. ACS Comb Sci 14:395–398

    CrossRef  CAS  Google Scholar 

  10. Ye L, Xu AZ, Cheng C et al (2011) Design and synthesis of affinity ligands and relation of their structure with adsorption of proteins. J Sep Sci 34:3145–3150

    CrossRef  CAS  Google Scholar 

  11. Burton NP, Lowe CR (1992) Design of novel affinity adsorbents for the purification of trypsin-like proteases. J Mol Recognit 5:55–68

    CrossRef  CAS  Google Scholar 

  12. Labrou NE, Clonis YD (1995) Biomimetic dye affinity chromatography for the purification of bovine heart lactate dehydrogenase. J Chromatogr A 718:35–44

    CrossRef  CAS  Google Scholar 

  13. Labrou NE, Eliopoulos E, Clonis YD (1999) Molecular modeling for the design of a biomimetic chimeric ligand. Application to the purification of bovine heart L-lactate dehydrogenase. Biotechnol Bioeng 63:322–332

    CrossRef  CAS  Google Scholar 

  14. Li R, Dowd V, Stewart DJ et al (1998) Design, synthesis, and application of a protein A mimetic. Nat Biotechnol 16:190–195

    CrossRef  CAS  Google Scholar 

  15. Teng SF, Sproule K, Hussain A et al (1999) A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand. J Mol Recognit 12:67–75

    CrossRef  CAS  Google Scholar 

  16. Teng SF, Sproule K, Husain A et al (2000) Affinity chromatography on immobilized “biomimetic” ligands synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand. J Chromatogr B 740:1–15

    CrossRef  CAS  Google Scholar 

  17. Roque ACA, Taipa MA, Lowe CR (2005) An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatography. J Chromatogr A 1064:157–167

    CrossRef  CAS  Google Scholar 

  18. Roque ACA, Taipa MA, Lowe CR (2005) Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L from Pentostreptococcus magnus. J Mol Recognit 18:213–224

    CrossRef  CAS  Google Scholar 

  19. Palanisamy UD, Hussain A, Iqbal S et al (1999) Design, synthesis and characterisation of affinity ligands for glycoproteins. J Mol Recognit 12:57–66

    CrossRef  CAS  Google Scholar 

  20. Palanisamy UD, Winzor DJ, Lowe CR (2000) Synthesis and evaluation of affinity adsorbents for glycoproteins: an artificial lectin. J Chromatogr B 746:265–281

    CrossRef  CAS  Google Scholar 

  21. Filippusson H, Erlendsson LS, Lowe CR (2000) Design, synthesis and evaluation of biomimetic affinity ligands for elastases. J Mol Recognit 13:370–381

    CrossRef  CAS  Google Scholar 

  22. Melissis SC, Rigden DJ, Clonis YD (2001) New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes. J Chromatogr A 917:29–42

    CrossRef  CAS  Google Scholar 

  23. Melissis S, Labrou NE, Clonis YD (2006) Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes—one-step purification of Pfu DNA polymerase. J Chromatogr A 1122:63–75

    CrossRef  CAS  Google Scholar 

  24. Batalha IL, Zhou H, Lilley K et al (2016) Mimicking nature: phosphopeptide enrichment using combinatorial libraries of affinity ligands. J Chromatogr A 1457:76–87

    CrossRef  CAS  Google Scholar 

  25. Santos R, Figueiredo C, Viecinski AC et al (2019) Designed affinity ligands to capture human serum albumin. J Chromatogr A 1583:88–97

    CrossRef  CAS  Google Scholar 

  26. Sproule K, Morrill P, Pearson JC et al (2000) New strategy for the design of ligands for the purification of pharmaceutical proteins by affinity chromatography. J Chromatogr B 740:17–33

    CrossRef  CAS  Google Scholar 

  27. Morrill PR, Gupta G, Sproule K et al (2002) Rational combinatorial chemistry-based selection, synthesis and evaluation of an affinity adsorbent for recombinant human clotting factor VII. J Chromatogr B 774:1–15

    CrossRef  CAS  Google Scholar 

  28. Ruiu L, Roque ACA, Taipa MA et al (2006) De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi. J Mol Recognit 19:372–378

    CrossRef  CAS  Google Scholar 

  29. Sousa IT, Ruiu L, Lowe CR et al (2009) Synthetic affinity ligands as a novel tool to improve protein stability. J Mol Recognit 22:83–90

    CrossRef  CAS  Google Scholar 

  30. Sousa IT, Lourenco NMT, Afonso CAM et al (2013) Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand. J Mol Recognit 26:104–112

    CrossRef  CAS  Google Scholar 

  31. Sousa IT (2011) A novel tool to improve protein stability: synthesis and screening of triazine-scaffolded affinity ligands to bind and stabilise cutinase. Doctoral thesis. Universidade Técnica de Lisboa, Lisbon

    Google Scholar 

  32. Platis D, Sotriffer CA, Clonis Y et al (2006) Lock-and-key motif as a concept for designing affinity adsorbents for protein purification. J Chromatogr A 1128:138–151

    CrossRef  CAS  Google Scholar 

  33. Platis D, Maltezos A, Ma JKC et al (2009) Combinatorial de novo design and application of a biomimetic affinity ligand for the purification of human anti-HIV mAb 4E10 from transgenic tobacco. J Mol Recognit 22:415–424

    CrossRef  CAS  Google Scholar 

  34. Roque ACA (2004) Design, synthesis and evaluation of immunoglobulin binding ligands: an artificial protein L. Doctoral thesis. Universidade Técnica de Lisboa, Lisbon

    Google Scholar 

  35. Creveld LD, Amadei A, van Schaik RC et al (1998) Identification of functional and unfolding motions of cutinase as obtained from molecular dynamics computer simulations. Proteins 33:253–264

    CrossRef  CAS  Google Scholar 

  36. Ruiu L (2008) De novo design, synthesis and screening of combinatorial libraries of affinity ligands directed towards the surface of cutinase from Fusarium solani pisi. Doctoral thesis. Universidade Técnica de Lisboa, Lisbon

    Google Scholar 

  37. Lam KS, Salmon SE, Hersh EM et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    CrossRef  CAS  Google Scholar 

  38. Qian J, El Khoury G, Issa H et al (2012) A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins. J Chromatogr B 898:15–23

    CrossRef  CAS  Google Scholar 

  39. El Khoury G, Lowe CR (2013) A biomimetic protein G adsorbent : an Ugi ligand for immunoglobulins and Fab fragments based on the third IgG-binding domain of Protein G. J Mol Recognit 26:190–200

    CrossRef  CAS  Google Scholar 

  40. Chen C, El Khoury G, Lowe CR (2014) Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction. J Chromatogr A 969:171–180

    CAS  Google Scholar 

  41. Pina AS, Dias AMGC, Ustok FI et al (2015) Mild and cost-effective green fluorescent protein purification employing small synthetic ligands. J Chromatogr A 1418:83–93

    CrossRef  CAS  Google Scholar 

  42. Pina AS, Carvalho S, Dias AMGC et al (2016) Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins. J Chromatogr A 1472:55–65

    CrossRef  CAS  Google Scholar 

  43. Langer T, Wolber G (2004) Virtual combinatorial chemistry and in silico screening: efficient tools for lead structure discovery? Pure Appl Chem 76:991–996

    CrossRef  CAS  Google Scholar 

  44. Zamolo L, Busini V, Moiani D et al (2008) Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies. Biotechnol Prog 24:527–539

    CrossRef  CAS  Google Scholar 

  45. Roque ACA, Taipa MA, Lowe CR (2004) A new method for the screening of solid-phase combinatorial libraries for affinity chromatography. J Mol Recognit 17:262–267

    CrossRef  CAS  Google Scholar 

  46. Pina AS, Lowe CR, Roque ACA (2010) Comparison of fluorescence labelling techniques for the selection of affinity ligands from solid-phase combinatorial libraries. Sep Sci Technol 45:2187–2193

    CrossRef  CAS  Google Scholar 

  47. Taipa MA (2014) Affinity separations. rational design, synthesis and evaluation: affinity ligands. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham, MA. https://doi.org/10.1016/B978-0-12-409547-2.10738-3

    CrossRef  Google Scholar 

  48. Walker JM (1996) SDS polyacrylamide gel electrophoresis of proteins. In: Walker JM (ed) The protein protocols handbook. Humana, Totowa, NJ, pp 55–62

    CrossRef  Google Scholar 

  49. Goncalves AM, Serro AP, Aires-Barros MR et al (2000) Effects of ionic surfactants used in reversed micelles on cutinase activity and stability. BBA-Protein Struct M 1480:92–106

    CrossRef  CAS  Google Scholar 

  50. Thurston JT, Dudley JR, Kaiser DW et al (1951) Cyanuric chloride derivatives. 1. Aminochloro-S-triazines. J Am Chem Soc 73:2981–2983

    CrossRef  CAS  Google Scholar 

  51. Antoni G, Presentini R, Neri P (1983) A simple method for the estimation of amino groups on insoluble matrix beads. Anal Biochem 129:60–63

    CrossRef  CAS  Google Scholar 

  52. West R (1965) Siegfried ruhemann and discovery of ninhydrin. J Chem Educ 42:386–387

    CrossRef  CAS  Google Scholar 

  53. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ângela Taipa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sousa, I.T., Taipa, M.Â. (2021). Biomimetic Affinity Ligands for Protein Purification. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols