Skip to main content

An Orthogonal Fusion Tag for Efficient Protein Purification

Part of the Methods in Molecular Biology book series (MIMB,volume 2178)

Abstract

In this chapter, we present an efficient method for stringent protein purification facilitated by a dual affinity tag referred to as ABDz1, which is based on a 5 kDa albumin-binding domain from Streptococcal Protein G. The small fusion tag enables an orthogonal affinity purification approach based on two successive and highly specific affinity purification steps. This approach is enabled by native binding of ABDz1 to human serum albumin and engineered binding to Staphylococcal Protein A, respectively. The ABDz1-tag can be fused to either terminus of a protein of interest and the purification steps can be carried out using standard laboratory equipment.

Key words

  • Orthogonal affinity purification
  • ABDz1
  • Protein G
  • Human serum albumin
  • Protein A
  • Albumin binding
  • Fusion tag

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0775-6_13
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0775-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80(6):1–35. https://doi.org/10.1002/0471140864.ps0601s80

    CrossRef  PubMed  Google Scholar 

  2. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:Unit 9 9. https://doi.org/10.1002/0471140864.ps0909s73

    CrossRef  Google Scholar 

  3. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3(4):263–281

    CrossRef  CAS  PubMed  Google Scholar 

  4. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760(9):1304–1313. https://doi.org/10.1016/j.bbagen.2006.03.027

    CrossRef  CAS  PubMed  Google Scholar 

  5. Hu Y, Romao E, Vertommen D, Vincke C, Morales-Yanez F, Gutierrez C, Liu C, Muyldermans S (2017) Generation of nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expr Purif 137:64–76. https://doi.org/10.1016/j.pep.2017.06.016

    CrossRef  CAS  PubMed  Google Scholar 

  6. Parsy CB, Chapman CJ, Barnes AC, Robertson JF, Murray A (2007) Two-step method to isolate target recombinant protein from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 853(1–2):314–319. https://doi.org/10.1016/j.jchromb.2007.03.046

    CrossRef  CAS  PubMed  Google Scholar 

  7. Li Y (2010) Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem 55(2):73–83. https://doi.org/10.1042/BA20090273

    CrossRef  CAS  PubMed  Google Scholar 

  8. Miladi B, Dridi C, El Marjou A, Boeuf G, Bouallagui H, Dufour F, Di Martino P, Elm’selmi A (2013) An improved strategy for easy process monitoring and advanced purification of recombinant proteins. Mol Biotechnol 55(3):227–235. https://doi.org/10.1007/s12033-013-9673-5

    CrossRef  CAS  PubMed  Google Scholar 

  9. Waugh DS (2011) Reprint of: making the most of affinity tags. Protein Expr Purif. https://doi.org/10.1016/j.pep.2011.08.019

  10. Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Struct Biol 26:54–61. https://doi.org/10.1016/j.sbi.2014.04.006

    CrossRef  CAS  PubMed  Google Scholar 

  11. Nilvebrant J, Hober S (2013) The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J 6:e201303009. https://doi.org/10.5936/csbj.201303009

    CrossRef  PubMed  Google Scholar 

  12. Alm T, Yderland L, Nilvebrant J, Halldin A, Hober S (2010) A small bispecific protein selected for orthogonal affinity purification. Biotechnol J 5(6):605–617. https://doi.org/10.1002/biot.201000041

    CrossRef  CAS  PubMed  Google Scholar 

  13. Nilvebrant J, Alm T, Hober S, Lofblom J (2011) Engineering bispecificity into a single albumin-binding domain. PLoS One 6(10):e25791. https://doi.org/10.1371/journal.pone.0025791

    CrossRef  CAS  PubMed  Google Scholar 

  14. Nilvebrant J, Astrand M, Georgieva-Kotseva M, Bjornmalm M, Lofblom J, Hober S (2014) Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One 9(8):e103094. https://doi.org/10.1371/journal.pone.0103094

    CrossRef  CAS  PubMed  Google Scholar 

  15. Nilvebrant J, Astrand M, Lofblom J, Hober S (2013) Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell Mol Life Sci 70(20):3973–3985. https://doi.org/10.1007/s00018-013-1370-9

    CrossRef  CAS  PubMed  Google Scholar 

  16. Kanje S, Venskutonyte R, Scheffel J, Nilvebrant J, Lindkvist-Petersson K, Hober S (2018) Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J Mol Biol 430(18 Pt B):3427–3438. https://doi.org/10.1016/j.jmb.2018.06.004

    CrossRef  CAS  PubMed  Google Scholar 

  17. Hansen S, Stuber JC, Ernst P, Koch A, Bojar D, Batyuk A, Pluckthun A (2017) Design and applications of a clamp for green fluorescent protein with picomolar affinity. Sci Rep 7(1):16292. https://doi.org/10.1038/s41598-017-15711-z

    CrossRef  CAS  PubMed  Google Scholar 

  18. Nilvebrant J, Alm T, Hober S (2012) Orthogonal protein purification facilitated by a small bispecific affinity tag. J Vis Exp 59. https://doi.org/10.3791/3370

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Hober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Nilvebrant, J., Åstrand, M., Hober, S. (2021). An Orthogonal Fusion Tag for Efficient Protein Purification. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols