Skip to main content

Correlative Light and Electron Microscopy Imaging of the Plant trans-Golgi Network

  • Protocol
  • First Online:
Plant Endosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2177))

Abstract

The plant trans-Golgi network (TGN) is a multifunctional organelle derived from the Golgi. It consists of tubulovesicular compartments scattered in the cytosol. They produce secretory vesicles delivering proteins and polysaccharides to the cell wall. They also serve as early endosomal compartments, receiving endocytic cargos from the plasma membrane. This versatility is thought to originate from functional variations among individual TGN compartments. Correlative light and electron microscopy (CLEM) combines the imaging capability of light microscopy and electron microscopy (EM) to determine the location of macromolecules in EM images in the cellular context. It is possible to identify organelles associated with specific fluorescent markers and examine their membrane architectures at nanometer-level resolutions using CLEM. In this chapter, we will explain the CLEM method that our lab uses to investigate functional and structural heterogeneity among individual TGN compartments in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosquete MR, Drakakaki G (2018) Plant TGN in the stress response: a compartmentalized overview. Curr Opin in Plant Biol 46:122–129

    Article  CAS  Google Scholar 

  2. Staehelin LA, Kang B-H (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468

    Article  CAS  Google Scholar 

  3. van de Meene AML, Doblin MS, Bacic A (2016) The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254:1–20

    Google Scholar 

  4. LaMontagne ED, Heese A (2017) Trans -Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. Curr Opin in Plant Biol 40:114–121

    Article  CAS  Google Scholar 

  5. Ruiz Rosquete M, Davis DJ, Drakakaki G (2017) The plant Trans-Golgi network. Not just a matter of distinction. Plant Physiol 176:01239.2017–01239.2198

    Google Scholar 

  6. Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    Article  CAS  Google Scholar 

  7. Luschnig C, Vert G (2014) The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141:2924–2938

    Article  CAS  Google Scholar 

  8. Kang B-H, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kβ1-labeled trans golgi network compartments in Arabidopsis. Traffic 12:313–329

    Article  CAS  Google Scholar 

  9. Uemura T, Nakano RT, Takagi J, Wang Y, Kramer K, Finkemeier I, Nakagami H, Tsuda K, Ueda T, Schulze-Lefert P, Nakano A (2019) A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol 179:519–532

    Article  CAS  Google Scholar 

  10. Wang P, Chen X, Goldbeck C, Chung E, Kang B-H (2017) A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J 92:596–610

    Article  CAS  Google Scholar 

  11. Wang P, Liang Z, Kang B-H (2019) Electron tomography of plant organelles and the outlook for correlative microscopic approaches. New Phytol 223:1756–1761

    Article  Google Scholar 

  12. Seguí-Simarro JM, Staehelin LA (2006) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223:223–236

    Article  Google Scholar 

  13. Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JAG (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    Article  CAS  Google Scholar 

  14. Bell K, Mitchell S, Paultre D, Posch M, Oparka K (2013) Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol 161:1595–1603

    Article  CAS  Google Scholar 

  15. Avinoam O, Schorb M, Beese CJ, Briggs JAG, Kaksonen M (2015) ENDOCYTOSIS. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348:1369–1372

    Article  CAS  Google Scholar 

  16. Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, Vihinen H, Jokitalo E, Guan J-L, Buss F, Smith AM, Walker SA, Eskelinen E-L, Ktistakis NT (2019) Selective autophagy of mitochondria on a ubiquitin- endoplasmic-reticulum platform. Dev Cell 50(5):627–643

    Article  CAS  Google Scholar 

  17. Kang B (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96:259–283

    Article  Google Scholar 

  18. Wang P, Kang B-H (2018) The trans-Golgi sorting and the exocytosis of xylogalacturonan from the root border/border-like cell are conserved among monocot and dicot plant species. Plant Signal Behav 13:e1469362–e1469363

    Article  Google Scholar 

  19. Toyooka K, Kang B-H (2014) Reconstructing plant cells in 3D by serial section electron tomography. In: Zarsky V, Cvrckova F (eds) Plant cell morphogenesis. Humana Press, Totowa, NJ, pp 159–170

    Chapter  Google Scholar 

  20. Kang B-H (2016) STEM tomography imaging of hypertrophied Golgi stacks in mucilage-secreting cells. Methods Mol Biol 1496:55–62

    Article  CAS  Google Scholar 

  21. Mai KKK, Kang B-H (2017) Semiautomatic segmentation of plant Golgi stacks in electron tomograms using 3dmod. Methods Mol Biol 1662:97–104

    Article  CAS  Google Scholar 

  22. Liang Z, Zhu N, Mai KK, Liu Z, Liu Z, Tzeng D, Tzeng DTW, Osteryoung KW, Zhong S, Staehelin LA, Staehelin A, Kang B-H (2018) Thylakoid-bound polysomes and a dynamin-related protein, FZL, mediate critical stages of the linear chloroplast biogenesis program in greening Arabidopsis cotyledons. Plant Cell 30:1476–1495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Hong Kong Research Grant Council (GRF14126116, AoE/M-05/12, C4002-17G), Rural Development Administration of Korea (Project No. 10953092019), and Chinese University of Hong Kong (Direct Grant 14101218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Ho Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, P., Kang, BH. (2020). Correlative Light and Electron Microscopy Imaging of the Plant trans-Golgi Network. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 2177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0767-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0767-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0766-4

  • Online ISBN: 978-1-0716-0767-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics