Skip to main content

Purification and Interaction Analysis of a Plant-Specific RAB5 Effector by In Vitro Pull-Down Assay

  • Protocol
  • First Online:
Plant Endosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2177))

  • 929 Accesses

Abstract

RAB GTPases regulate membrane traffic by interacting with effector proteins in the GTP-bound active form. RAB GTPases are highly conserved in a broad range of eukaryotic organisms, while land plants and some green algal species possess a plant-specific RAB5 group. A plant-specific RAB5 in Arabidopsis called ARA6 was shown to regulate a characteristic trafficking route, and participate in abiotic and biotic stress responses. The identification of ARA6 effectors is a powerful strategy to get insights into the molecular basis of ARA6 functions. Recently, we identified an ARA6 effector, PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2), and characterized its functions by biochemical means. PUF2 was hardly expressed as a recombinant protein in the bacterial system, but we solved this problem by optimizing the codon usage of PUF2 CDS to suite for expression in Escherichia coli. Here, we present the protocol we employed to purify PUF2 protein, and to test its nucleotide state-specific interaction with ARA6 by in vitro pull-down assay. This approach would be extended to analyze the molecular functions of other effector proteins of RAB GTPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103(32):11821–11827. https://doi.org/10.1073/pnas.0601617103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horgan CP, McCaffrey MW (2011) Rab GTPases and microtubule motors. Biochem Soc Trans 39(5):1202–1206. https://doi.org/10.1042/BST0391202

    Article  CAS  PubMed  Google Scholar 

  3. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149. https://doi.org/10.1152/physrev.00059.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Annu Rev Biochem 81:637–659. https://doi.org/10.1146/annurev-biochem-052810-093700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito C, Ueda T (2009) Chapter 4: functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233. https://doi.org/10.1016/S1937-6448(08)02004-2

    Article  CAS  PubMed  Google Scholar 

  6. Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5(6):393–399. https://doi.org/10.1111/j.1398-9219.2004.00190.x

    Article  CAS  PubMed  Google Scholar 

  7. Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2(5):REVIEWS3007. https://doi.org/10.1186/gb-2001-2-5-reviews3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117. https://doi.org/10.1038/35052055

    Article  CAS  PubMed  Google Scholar 

  9. Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128(17):3171–3176. https://doi.org/10.1242/jcs.166074

    Article  CAS  PubMed  Google Scholar 

  10. Christoforidis S, McBride HM, Burgoyne RD, Zerial M (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397(6720):621–625. https://doi.org/10.1038/17618

    Article  CAS  PubMed  Google Scholar 

  11. Das S, Lambright DG (2016) Membrane trafficking: an endosome tether meets a Rab and Collapses. Curr Biol 26(20):R927–R929. https://doi.org/10.1016/j.cub.2016.08.056

    Article  CAS  PubMed  Google Scholar 

  12. Murray DH, Jahnel M, Lauer J, Avellaneda MJ, Brouilly N, Cezanne A, Morales-Navarrete H, Perini ED, Ferguson C, Lupas AN, Kalaidzidis Y, Parton RG, Grill SW, Zerial M (2016) An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537(7618):107–111. https://doi.org/10.1038/nature19326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394(6692):494–498. https://doi.org/10.1038/28879

    Article  CAS  PubMed  Google Scholar 

  14. Balderhaar HJ, Lachmann J, Yavavli E, Brocker C, Lurick A, Ungermann C (2013) The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc Natl Acad Sci U S A 110(10):3823–3828. https://doi.org/10.1073/pnas.1221785110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Balderhaar HJ, Ungermann C (2013) CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126(Pt 6):1307–1316. https://doi.org/10.1242/jcs.107805

    Article  CAS  PubMed  Google Scholar 

  16. Langemeyer L, Frohlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28(11):957–970. https://doi.org/10.1016/j.tcb.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  17. Peplowska K, Markgraf DF, Ostrowicz CW, Bange G, Ungermann C (2007) The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 12(5):739–750. https://doi.org/10.1016/j.devcel.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  18. Takemoto K, Ebine K, Askani JC, Kruger F, Gonzalez ZA, Ito E, Goh T, Schumacher K, Nakano A, Ueda T (2018) Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc Natl Acad Sci U S A 115(10):E2457–E2466. https://doi.org/10.1073/pnas.1717839115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christoforidis S, Zerial M (2000) Purification and identification of novel Rab effectors using affinity chromatography. Methods 20(4):403–410. https://doi.org/10.1006/meth.2000.0953

    Article  CAS  PubMed  Google Scholar 

  20. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16(4):400–406. https://doi.org/10.1016/j.ceb.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  21. Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6(11):a022616. https://doi.org/10.1101/cshperspect.a022616

    Article  PubMed  PubMed Central  Google Scholar 

  22. Galvez T, Gilleron J, Zerial M, O'Sullivan GA (2012) SnapShot: mammalian Rab proteins in endocytic trafficking. Cell 151(1):234–234. e232. https://doi.org/10.1016/j.cell.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  23. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of Rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barlow LD, Dacks JB (2018) Seeing the endomembrane system for the trees: evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Semin Cell Dev Biol 80:142–152. https://doi.org/10.1016/j.semcdb.2017.09.027

    Article  CAS  PubMed  Google Scholar 

  25. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125(Pt 10):2500–2508. https://doi.org/10.1242/jcs.101378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13(7):853–859. https://doi.org/10.1038/ncb2270

    Article  CAS  PubMed  Google Scholar 

  27. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20(17):4730–4741. https://doi.org/10.1093/emboj/20.17.4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ebine K, Ueda T (2009) Unique mechanism of plant endocytic/vacuolar transport pathways. J Plant Res 122(1):21–30. https://doi.org/10.1007/s10265-008-0200-x

    Article  PubMed  Google Scholar 

  29. Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Nishiyama T, Sakayama H, Hammerl P, Tenhaken R, Ueda T, Foissner I (2013) Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot 64(18):5553–5568. https://doi.org/10.1093/jxb/ert322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117(Pt 6):943–954. https://doi.org/10.1242/jcs.00920

    Article  CAS  PubMed  Google Scholar 

  31. Bottanelli F, Gershlick DC, Denecke J (2012) Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 13(2):338–354. https://doi.org/10.1111/j.1600-0854.2011.01303.x

    Article  CAS  PubMed  Google Scholar 

  32. Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T (2014) Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr Biol 24(12):1375–1382. https://doi.org/10.1016/j.cub.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  33. Goh T, Uchida W, Arakawa S, Ito E, Dainobu T, Ebine K, Takeuchi M, Sato K, Ueda T, Nakano A (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19(11):3504–3515. https://doi.org/10.1105/tpc.107.053876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh MK, Krüger F, Beckmann H, Brumm S, Vermeer JE, Munnik T, Mayer U, Stierhof YD, Grefen C, Schumacher K, Jürgens G (2014) Protein delivery to vacuole requires SAND protein-dependent Rab GTPase conversion for MVB-vacuole fusion. Curr Biol 24(12):1383–1389. https://doi.org/10.1016/j.cub.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  35. Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim YW, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15(5):1057–1070

    Article  CAS  Google Scholar 

  36. Haas TJ, Sliwinski MK, Martinez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19(4):1295–1312. https://doi.org/10.1105/tpc.106.049346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsutsui T, Nakano A, Ueda T (2015) The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant Cell Physiol 56(6):1073–1083. https://doi.org/10.1093/pcp/pcv029

    Article  CAS  PubMed  Google Scholar 

  38. Camacho L, Smertenko AP, Perez-Gomez J, Hussey PJ, Moore I (2009) Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122(Pt 23):4383–4392. https://doi.org/10.1242/jcs.053488

    Article  CAS  PubMed  Google Scholar 

  39. Diaz E, Schimmoller F, Pfeffer SR (1997) A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 138(2):283–290. https://doi.org/10.1083/jcb.138.2.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gournier H, Stenmark H, Rybin V, Lippe R, Zerial M (1998) Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO J 17(7):1930–1940. https://doi.org/10.1093/emboj/17.7.1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T (2018) Integration of two RAB5 groups during endosomal transport in plants. Elife 7. https://doi.org/10.7554/eLife.34064

  42. Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172(7):991–998. https://doi.org/10.1083/jcb.200508116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren M, Zeng J, De Lemos-Chiarandini C, Rosenfeld M, Adesnik M, Sabatini DD (1996) In its active form, the GTP-binding protein rab8 interacts with a stress-activated protein kinase. Proc Natl Acad Sci U S A 93(10):5151–5155. https://doi.org/10.1073/pnas.93.10.5151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakurai HT, Inoue T, Nakano A, Ueda T (2016) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an interacting partner of RAB5 GTPases, regulates membrane trafficking to protein storage vacuoles in Arabidopsis. Plant Cell 28(6):1490–1503. https://doi.org/10.1105/tpc.16.00326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stenmark H, Vitale G, Ullrich O, Zerial M (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83(3):423–432

    Article  CAS  Google Scholar 

  46. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353. https://doi.org/10.1016/j.tibtech.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  47. Welch M, Villalobos A, Gustafsson C, Minshull J (2011) Designing genes for successful protein expression. Methods Enzymol 498:43–66. https://doi.org/10.1016/B978-0-12-385120-8.00003-6

    Article  CAS  PubMed  Google Scholar 

  48. Gould N, Hendy O, Papamichail D (2014) Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2:41. https://doi.org/10.3389/fbioe.2014.00041

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parret AH, Besir H, Meijers R (2016) Critical reflections on synthetic gene design for recombinant protein expression. Curr Opin Struct Biol 38:155–162. https://doi.org/10.1016/j.sbi.2016.07.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to T.U., 24114003 and 24370019, and E.I., 15K18527 and 17K15144), a Grant-in-Aid for JSPS fellows (E.I., 2010649), the Mitsubishi Foundation, Yamada Science Foundation, Kato Memorial Bioscience Foundation, NIBB Collaborative Research Program (16-339, 17-302, 18-302 to E.I.), and the Building of Consortia for the Development of Human Research in Science and Technology, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ito, E., Choi, Sw., Ueda, T. (2020). Purification and Interaction Analysis of a Plant-Specific RAB5 Effector by In Vitro Pull-Down Assay. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 2177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0767-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0767-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0766-4

  • Online ISBN: 978-1-0716-0767-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics