Skip to main content

Immunopurification of Intact Endosomal Compartments for Lipid Analyses in Arabidopsis

  • Protocol
  • First Online:
Plant Endosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2177))

Abstract

Endosomes play a major role in various cellular processes including cell–cell signaling, development and cellular responses to environment. Endosomes are dynamically organized into a complex set of endomembrane compartments themselves subcompartmentalized in distinct pools or subpopulations. It is increasingly evident that endosome dynamics and maturation is driven by local modification of lipid composition. The diversity of membrane lipids is impressive and their homeostasis often involves crosstalk between distinct lipid classes. Hence, biochemical characterization of endosomal membrane lipidome would clarify the maturation steps of endocytic routes. Immunopurification of intact endomembrane compartments has been employed in recent years to isolate early and late endosomal compartments and can even be used to separate subpopulations of early endosomes. In this section, we will describe the immunoprecipitation protocol to isolate endosomes with the aim to analyze the lipid content. We will detail a procedure to identify the total fatty acid and sterol content of isolated endosomes as a first line of lipid identification. Advantages and limitations of the method will be discussed as well as potential pitfalls and critical steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730

    Article  CAS  Google Scholar 

  2. Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W et al (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22(4):1344–1357

    Article  CAS  Google Scholar 

  3. Uemura T, Nakano RT, Takagi J, Wang Y, Kramer K, Finkemeier I et al (2019) A Golgi-released subpopulation of the trans-Golgi network mediates protein secretion in Arabidopsis. Plant Physiol 179(2):519–532

    Article  CAS  Google Scholar 

  4. Uemura T, Suda Y, Ueda T, Nakano A (2014) Dynamic behavior of the trans-golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55(4):694–703

    Article  CAS  Google Scholar 

  5. Donohoe BS, Kang BH, Staehelin LA (2007) Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 104(1):163–168

    Article  CAS  Google Scholar 

  6. Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12(3):313–329

    Article  CAS  Google Scholar 

  7. Ito E, Fujimoto M, Ebine K, Uemura T, Ueda T, Nakano A (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J 69(2):204–216

    Article  CAS  Google Scholar 

  8. Brüx A, Liu TY, Krebs M, Stierhof YD, Lohmann JU, Miersch O et al (2008) Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20(4):1088–1100

    Article  Google Scholar 

  9. Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12(12):3733–3743

    Article  CAS  Google Scholar 

  10. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29(2):49–65

    Article  CAS  Google Scholar 

  11. Gendre D, Oh J, Boutté Y, Best JG et al (2011) Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci U S A 108(19):8048–8053

    Article  CAS  Google Scholar 

  12. Boutté Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R et al (2013) ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci U S A 110(40):16259–16264

    Article  Google Scholar 

  13. Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20(1):101–123

    Article  CAS  Google Scholar 

  14. Wattelet-Boyer V, Brocard L, Jonsson K, Esnay N, Joubès J, Domergue F et al (2016) Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 7:12788

    Article  CAS  Google Scholar 

  15. Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3(11):1128–1134

    Article  CAS  Google Scholar 

  16. Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol 159(1):12–26

    Article  CAS  Google Scholar 

  17. Parsons HT, Stevens TJ, McFarlane HE, Vidal-Melgosa S, Griss J, Lawrence N et al (2019) Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization. Plant Cell 31(9):2010–2034

    Article  CAS  Google Scholar 

  18. Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF et al (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22(2):413–424

    Article  CAS  Google Scholar 

  19. Groen AJ, Sancho-Andrés G, Breckels LM, Gatto L, Aniento F, Lilley KS (2014) Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue. J Proteome Res 13(2):763–776

    Article  CAS  Google Scholar 

  20. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59(1):169–178

    Article  CAS  Google Scholar 

  21. Heard W, Sklenář J, Tomé DF, Robatzek S, Jones AM (2015) Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol Cell Proteomics 14(7):1796–1813

    Article  CAS  Google Scholar 

  22. Wallroth A, Haucke V (2018) Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem 293(5):1526–1535

    Article  CAS  Google Scholar 

  23. Yang JS, Gad H, Lee SY, Mironov A, Zhang L, Beznoussenko GV et al (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10(10):1146–1153

    Article  CAS  Google Scholar 

  24. Marais C, Wattelet-Boyer V, Bouyssou G, Hocquellet A, Dupuy JW, Batailler B et al (2015) The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of Arabidopsis thaliana. J Exp Bot 66(21):6665–6678

    Article  CAS  Google Scholar 

  25. Morsomme P, Dambly S, Maudoux O, Boutry M (1998) Single point mutations distributed in 10 soluble and membrane regions of the Nicotiana plumbaginifolia plasma membrane PMA2 H+-ATPase activate the enzyme and modify the structure of the C-terminal region. J Biol Chem 273(52):34837–34842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the French National Research agency (ANR) grant “caLIPSO” to Y.B (ANR-18-CE13-0025) and Overseas Research Fellowship granted from Japan Society for Promotion of Science (JSPP) to Y.I. We gratefully acknowledge Pierre Van Delft for helpful discussions and support for lipidomic analyses (Plateforme MetaboHUB-Bordeaux) (ANR-11-INBS-0010). The authors would like to warmly acknowledge Natasha Raikhel (Distinguished Professor of Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, USA) for making available the SYP61-CFP Arabidopsis line and the support she originally provided to analyze lipid content in immunopurified TGN fraction. We thank Patrick Moreau and Sebastien Mongrand for helpful comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magali Grison or Yohann Boutté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ito, Y., Grison, M., Esnay, N., Fouillen, L., Boutté, Y. (2020). Immunopurification of Intact Endosomal Compartments for Lipid Analyses in Arabidopsis. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 2177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0767-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0767-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0766-4

  • Online ISBN: 978-1-0716-0767-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics