Skip to main content

Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior

  • Protocol
  • First Online:
Cancer Cell Signaling

Abstract

Stiffness control of cell culture platforms provides researchers in cell biology with the ability to study different experimental models in conditions of mimicking physiological or pathological microenvironments. Nevertheless, the signal transduction pathways and drug sensibility of cancer cells have been poorly characterized widely using biomimetic platforms because the limited experience of cancer cell biology groups about handling substrates with specific mechanical properties. The protein cross-linking and stiffening control are crucial checkpoints that could strongly affect cell adhesion and spreading, misrepresenting the data acquired, and also generating inaccurate cellular models. Here, we introduce a simple method to adhere to polyacrylamide (PAA) hydrogels on glass coverslips without any special treatment for mechanics studies in cancer cell biology. By using a commercial photosensitive glue, Loctite 3525, it is possible to polymerize PAA hydrogels directly on glass surfaces. Furthermore, we describe a cross-linking reaction method to attach proteins to PAA as an alternative method to Sulfo-SANPAH cross-linking, which is sometimes difficult to implement and reproduce. In this chapter, we describe a reliable procedure to fabricate ECM protein–cross-linked PAA hydrogels for mechanotransduction studies on cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Oliveira Gonzale AC, Costa TF et al (2016) Wound healing—a literature review. An Bras Dermatol 91(5):614–620. https://doi.org/10.1590/abd1806-4841.20164741

    Article  Google Scholar 

  2. Rodrigues M, Kosaric N, Bonham CA et al (2019) Wound healing: a cellular perspective. Physiol Rev 99(1):665–706. https://doi.org/10.1152/physrev.00067.2017

    Article  CAS  PubMed  Google Scholar 

  3. Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    CAS  PubMed  Google Scholar 

  4. López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    PubMed  PubMed Central  Google Scholar 

  5. Landskron G, De la Fuente M, Thuwajit P et al (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185. https://doi.org/10.1155/2014/149185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rybinski B, Franco-Barraza J, Cukierman E (2014) The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 46:223–244

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stone RC, Pastar I, Ojeh N et al (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365(3):495–506. https://doi.org/10.1007/s00441-016-2464-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Luga V, Wrana JL (2013) Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 73:6843–6847

    CAS  PubMed  Google Scholar 

  11. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thiery JP, Acloque H, Huang RYJ et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  13. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sodir NM, Swigart LB, Karnezis AN et al (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–916

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Filipe EC, Chitty JL, Cox TR (2018) Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol 99:58–76

    PubMed  PubMed Central  Google Scholar 

  16. Naba A, Clauser KR, Ding H et al (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24. https://doi.org/10.1016/j.matbio.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Park KM, Lewis D, Gerecht S (2017) Bioinspired hydrogels to engineer cancer microenvironments. Annu Rev Biomed Eng 19:109–133

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang K, Wu F, Seo BR et al (2017) Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biol 60–61:86–95

    PubMed  Google Scholar 

  19. Walker C, Mojares E, Del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19:E3028

    PubMed  Google Scholar 

  20. DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12:308–319

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22:697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Socovich AM, Naba A (2019) The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin Cell Dev Biol 89:157–166

    CAS  PubMed  Google Scholar 

  23. Provenzano PP, Eliceiri KW, Campbell JM et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:38

    PubMed  PubMed Central  Google Scholar 

  24. Barbazán J, Matic Vignjevic D (2019) Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol 56:71–79

    PubMed  Google Scholar 

  25. Zeltz C, Primac I, Erusappan P et al (2019) Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 62:166–181

    PubMed  Google Scholar 

  26. Wang T-H, Hsia S-M, Shieh T-M (2016) Lysyl oxidase and the tumor microenvironment. Int J Mol Sci 18(1):62. https://doi.org/10.3390/ijms18010062

    Article  CAS  PubMed Central  Google Scholar 

  27. Goggins E, Kakkad S, Mironchik Y et al (2018) Hypoxia inducible factors modify collagen I fibers in MDA-MB-231 triple negative breast cancer xenografts. Neoplasia 20:131–139

    CAS  PubMed  Google Scholar 

  28. Wullkopf L, West A-KV, Leijnse N et al (2018) Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell 29(20):2378–2385. https://doi.org/10.1091/mbc.e18-05-0319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    CAS  PubMed  Google Scholar 

  30. Northcott JM, Dean IS, Mouw JK et al (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6:17

    PubMed  PubMed Central  Google Scholar 

  31. Ban E, Franklin JM, Nam S et al (2018) Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys J 114:450–461

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang M, Yuan J, Peng C et al (2014) Collagen as a double-edged sword in tumor progression. Tumour Biol 35:2871–2882

    CAS  PubMed  Google Scholar 

  33. Northey JJ, Przybyla L, Weaver VM (2017) Tissue force programs cell fate and tumor aggression. Cancer Discov 7:1224–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mukherjee A, Behkam B, Nain AS (2019) Cancer cells sense fibers by coiling on them in a curvature-dependent manner. iScience 19:905–915. https://doi.org/10.1016/j.isci.2019.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolfenson H, Yang B, Sheetz MP (2019) Steps in mechanotransduction pathways that control cell morphology. Annu Rev Physiol 81:585–605

    CAS  PubMed  Google Scholar 

  36. Holle AW, Young JL, Van Vliet KJ et al (2018) Cell-extracellular matrix mechanobiology: forceful tools and emerging needs for basic and translational research. Nano Lett 18:1–8

    CAS  PubMed  Google Scholar 

  37. Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: from pathways to scaling relationships. J Cell Biol 216:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Elosegui-Artola A, Oria R, Chen Y et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548

    CAS  PubMed  Google Scholar 

  39. De Pascalis C, Etienne-Manneville S (2017) Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 28:1833–1846

    PubMed  PubMed Central  Google Scholar 

  40. Zhou G, Yang L, Gray A et al (2017) The role of desmosomes in carcinogenesis. Onco Targets Ther 10:4059–4063

    PubMed  PubMed Central  Google Scholar 

  41. Pyronnet S, Guillermet-Guibert J, Bousquet C (2013) Restoring hemidesmosomes to prevent cancer cell invasiveness. Oncotarget 4:1123–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Seo J, Kim J (2018) Regulation of hippo signaling by actin remodeling. BMB Rep 51(3):151–156. https://doi.org/10.5483/bmbrep.2018.51.3.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rice AJ, Cortes E, Lachowski D et al (2017) Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6:e352

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dobrokhotov O, Samsonov M, Sokabe M et al (2018) Mechanoregulation and pathology of YAP/TAZ via hippo and non-hippo mechanisms. Clin Transl Med 7:23

    PubMed  PubMed Central  Google Scholar 

  45. Wu H, Wei L, Fan F et al (2015) Integration of hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun 6:6239

    CAS  PubMed  Google Scholar 

  46. Yang C-S, Stampouloglou E, Kingston NM et al (2018) Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells. EMBO Rep 19:e43577

    PubMed  PubMed Central  Google Scholar 

  47. Aragona M, Panciera T, Manfrin A et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059

    CAS  PubMed  Google Scholar 

  48. Elosegui-Artola A, Andreu I, Beedle AEM et al (2017) Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–1410.e14

    CAS  PubMed  Google Scholar 

  49. Shreberk-Shaked M, Oren M (2019) New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? Mol Oncol 13:1335–1341

    PubMed  PubMed Central  Google Scholar 

  50. Swift J, Discher DE (2014) The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci 127:3005–3015

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Alhudiri IM, Nolan CC, Ellis IO et al (2019) Expression of Lamin A/C in early-stage breast cancer and its prognostic value. Breast Cancer Res Treat 174:661–668

    CAS  PubMed  Google Scholar 

  52. Jia Y, Vong JS-L, Asafova A et al (2019) Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J Exp Med 216:1377–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakthivel KM, Sehgal P (2016) A novel role of Lamins from genetic disease to cancer biomarkers. Oncol Rev 10:309

    PubMed  PubMed Central  Google Scholar 

  54. Smith ER, Capo-Chichi CD, Xu X-X (2018) Defective nuclear lamina in aneuploidy and carcinogenesis. Front Oncol 8:529

    PubMed  PubMed Central  Google Scholar 

  55. Harada T, Swift J, Irianto J et al (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol 204:669–682

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Swift J, Ivanovska IL, Buxboim A et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104

    PubMed  PubMed Central  Google Scholar 

  57. Kim J-K, Louhghalam A, Lee G et al (2018) Author correction: nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 9:1115

    PubMed  PubMed Central  Google Scholar 

  58. Uhler C, Shivashankar GV (2018) Nuclear mechanopathology and cancer diagnosis. Trends Cancer Res 4:320–331

    CAS  Google Scholar 

  59. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pawłowski R, Rajakylä EK, Vartiainen MK et al (2010) An actin-regulated importin α/β-dependent extended bipartite NLS directs nuclear import of MRTF-A. EMBO J 29:3448–3458

    PubMed  PubMed Central  Google Scholar 

  61. K’ichiro H, Morita T (2013) Differences in the nuclear export mechanism between myocardin and myocardin-related transcription factor A. J Biol Chem 288:5743–5755

    Google Scholar 

  62. Gau D, Roy P (2018) SRF’ing and SAP’ing—the role of MRTF proteins in cell migration. J Cell Sci 131(19):jcs218222. https://doi.org/10.1242/jcs.218222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haak AJ, Appleton KM, Lisabeth EM et al (2017) Pharmacological inhibition of Myocardin-related transcription factor pathway blocks lung metastases of RhoC-overexpressing melanoma. Mol Cancer Ther 16:193–204

    CAS  PubMed  Google Scholar 

  64. Hu Q, Guo C, Li Y et al (2011) LMO7 mediates cell-specific activation of the rho-myocardin-related transcription factor-serum response factor pathway and plays an important role in breast cancer cell migration. Mol Cell Biol 31:3223–3240

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Er EE, Valiente M, Ganesh K et al (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20:966–978

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Speight P, Kofler M, Szászi K et al (2016) Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 7:11642. https://doi.org/10.1038/ncomms11642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foster CT, Gualdrini F, Treisman R (2017) Mutual dependence of the MRTF–SRF and YAP–TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 31(23–24):2361–2375. https://doi.org/10.1101/gad.304501.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meng C, He Y, Wei Z et al (2018) MRTF-A mediates the activation of COL1A1 expression stimulated by multiple signaling pathways in human breast cancer cells. Biomed Pharmacother 104:718–728

    CAS  PubMed  Google Scholar 

  69. Wei SC, Fattet L, Tsai JH et al (2015) Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 17:678–688

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang K, Grither WR, Van Hove S et al (2019) Correction: mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 132:jcs232348. https://doi.org/10.1242/jcs.180539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tata PR, Rajagopal J (2016) Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol 43:46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brown Y, Hua S, Tanwar PS (2019) Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 109:90–104

    CAS  PubMed  Google Scholar 

  73. Cichon MA, Radisky DC (2014) Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 8:588–594

    PubMed  PubMed Central  Google Scholar 

  74. Alibert C, Goud B, Manneville J-B (2017) Are cancer cells really softer than normal cells? Biol Cell 109:167–189

    PubMed  Google Scholar 

  75. Ghosh D, Dawson MR (2018) Microenvironment influences cancer cell mechanics from tumor growth to metastasis. Adv Exp Med Biol 1092:69–90

    CAS  PubMed  Google Scholar 

  76. Sneider A, Hah J, Wirtz D et al (2019) Recapitulation of molecular regulators of nuclear motion during cell migration. Cell Adh Migr 13:50–62

    CAS  PubMed  Google Scholar 

  77. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65–81

    CAS  PubMed  Google Scholar 

  78. Millet M, Ben Messaoud R, Luthold C et al (2019) Coupling Microfluidic Platforms, Microfabrication, and Tissue Engineered Scaffolds to Investigate Tumor Cells Mechanobiology. Micromachines (Basel) 10:E418

    Google Scholar 

  79. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong T-Y, Chang S-N, Jhong R-C et al (2019) Closer to nature through dynamic culture systems. Cell 8:E942

    Google Scholar 

  81. Pfeifer CR, Alvey CM, Irianto J et al (2017) Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr Opin Syst Biol 2:103–114

    PubMed  PubMed Central  Google Scholar 

  82. Irianto J, Xia Y, Pfeifer CR et al (2017) DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr Biol 27:210–223

    CAS  PubMed  Google Scholar 

  83. Fisher SA, Anandakumaran PN, Owen SC et al (2015) Tuning the microenvironment: click-crosslinked hyaluronic acid-based hydrogels provide a platform for studying breast cancer cell invasion. Adv Funct Mater 25. https://doi.org/10.1002/adfm.201502778

  84. Fong ELS, Martinez M, Yang J et al (2014) Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol Pharm 11:2040–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaemmerer E, Melchels FPW, Holzapfel BM et al (2014) Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 10:2551–2562

    CAS  PubMed  Google Scholar 

  86. Singh SP, Schwartz MP, Lee JY et al (2014) A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater Sci 2(7):1024–1034. https://doi.org/10.1039/c4bm00022f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewis DM, Park KM, Tang V et al (2016) Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci U S A 113:9292–9297

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang C, Tong X, Yang F (2014) Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm 11:2115–2125

    CAS  PubMed  Google Scholar 

  89. Tsai H-F, Trubelja A, Shen AQ et al (2017) Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 14

    Google Scholar 

  90. Vázquez-Victorio G, González-Espinosa C, Espinosa-Riquer ZP et al (2016) GPCRs and actin–cytoskeleqqqton dynamics. Methods Cell Biol 132:165–188. https://doi.org/10.1016/bs.mcb.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  91. Díaz-Bello B, Monroy-Romero AX, Pérez-Calixto D et al (2019) Method for the direct fabrication of polyacrylamide hydrogels with controlled stiffness in polystyrene multiwell plates for mechanobiology assays. ACS Biomater Sci Eng 9:4219–4227. https://doi.org/10.1021/acsbiomaterials.9b00988

    Article  CAS  Google Scholar 

  92. Vázquez-Victorio G, Peto-Gutiérrez C, Díaz-Bello B et al (2019) Building a microfluidic cell culture platform with stiffness control using Loctite 3525 glue. Lab Chip 19:3512–3525. https://doi.org/10.1039/c9lc00649d

    Article  CAS  PubMed  Google Scholar 

  93. Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol Chapter 10:Unit 10.16

    PubMed  Google Scholar 

  94. Ebnesajjad S (2011) Handbook of adhesives and surface preparation. Elsevier, Amsterdam. https://doi.org/10.1016/c2010-0-65918-9

    Book  Google Scholar 

Download references

Acknowledgments

We want to acknowledge to Daniel Pérez-Calixto and Beatriz Díaz-Bello for their expertise and comments in polyacrylamide hydrogels fabrication. We also acknowledge Aarón Cruz-Ramírez for Loctite 3525 deposition and cross-linking. We kindly thank Dr. José G. Cisneros-Lira for gifting us the human adenocarcinoma A549 cell line. We would also like to thank LaNSBioDyT National Laboratory, CONACyT grant #272894 as well as DGAPA-PAPIIT projects #IA206818, #IT102017 and IV200220 for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genaro Vázquez-Victorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vázquez-Victorio, G., Rodríguez-Hernández, A., Cano-Jorge, M., Monroy-Romero, A.X., Macías-Silva, M., Hautefeuille, M. (2021). Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics