Skip to main content

Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry

Part of the Methods in Molecular Biology book series (MIMB,volume 2174)

Abstract

The study of tumor exosomes has gained relevance in the last decades due to their potential use for therapeutic and diagnostic application. Although there is extensive knowledge of exosome biology, some biological samples like tumor-derived exosomes have been difficult to characterize due to their complexity and heterogeneity. This distinctive feature makes difficult the identification of specific exosome subpopulations with a shared molecular signature that could allow for targeting of exosomes with therapeutic and diagnostic potential use in cancer patients. Nanoscale flow cytometry has lately emerged as an alternative tool that can be adapted to the study of nanoparticles, such as exosomes. However, the physicochemical properties of these particles are an important issue to consider as nanoparticles need the application of specific settings which differ from those used in conventional flow cytometry of cells. Therefore, in the last few years, one of the main aims has been the optimization of technical and experimental protocols to improve exosome analysis. In this chapter, we discuss several aspects of cytometric systems with a special emphasis in technical considerations of samples and equipment.

Key words

  • Exosomes
  • Nanoscale flow cytometry
  • Exosome analysis
  • Nanoparticles
  • Exosome biology
  • Tumor-derived exosomes

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. https://doi.org/10.1038/nri855

    CrossRef  CAS  PubMed  Google Scholar 

  2. Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200(4):367–371. https://doi.org/10.1083/jcb.201212113

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akuma P, Okagu OD, Udenigwe CC (2019) Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front Sustain Food Syst 3:23. https://doi.org/10.3389/fsufs.2019.00023

    CrossRef  Google Scholar 

  4. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harshman SW, Canella A, Ciarlariello PD, Agarwal K, Branson OE, Rocci A, Cordero H, Phelps MA, Hade EM, Dubovsky JA, Palumbo A, Rosko A, Byrd JC, Hofmeister CC, Benson DM Jr, Paulaitis ME, Freitas MA, Pichiorri F (2016) Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteomics 136:89–98. https://doi.org/10.1016/j.jprot.2015.12.016

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang N, Pan J, Fang S, Zhou C, Han Y, Chen J, Meng X, Jin X, Gong Z (2019) Liquid biopsy: circulating exosomal long noncoding RNAs in cancer. Clin Chim Acta 495:331–337. https://doi.org/10.1016/j.cca.2019.04.082

    CrossRef  CAS  PubMed  Google Scholar 

  7. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    CrossRef  CAS  PubMed  Google Scholar 

  8. Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

    CrossRef  CAS  PubMed  Google Scholar 

  9. Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, Chen MK, Peng W, Qi T, Wang CY, Liu CD (2017) Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology 5(5):1007–1015. https://doi.org/10.1111/andr.12412

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meehan K, Vella LJ (2016) The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci 53(2):121–131. https://doi.org/10.3109/10408363.2015.1092496

    CrossRef  CAS  PubMed  Google Scholar 

  11. Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res 77(23):6480–6488. https://doi.org/10.1158/0008-5472.CAN-17-0994

    CrossRef  CAS  PubMed  Google Scholar 

  12. Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P, Bonnerot C (2002) Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol 14(7):713–722. https://doi.org/10.1093/intimm/dxf048

    CrossRef  CAS  PubMed  Google Scholar 

  13. Gopal SK, Greening DW, Hanssen EG, Zhu HJ, Simpson RJ, Mathias RA (2016) Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget 7(15):19709–19722. https://doi.org/10.18632/oncotarget.7573

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Mao Y, Wang Y, Dong L, Zhang Y, Zhang Y, Wang C, Zhang Q, Yang S, Cao L, Zhang X, Li X, Fu Z (2019) Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. J Exp Clin Cancer Res 38(1):389. https://doi.org/10.1186/s13046-019-1384-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Detmar M, Velasco P, Richard L, Claffey KP, Streit M, Riccardi L, Skobe M, Brown LF (2000) Expression of vascular endothelial growth factor induces an invasive phenotype in human squamous cell carcinomas. Am J Pathol 156(1):159–167. https://doi.org/10.1016/s0002-9440(10)64715-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. https://doi.org/10.1038/ncb3169

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F (2018) Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res 16(7):1196–1204. https://doi.org/10.1158/1541-7786.MCR-17-0784

    CrossRef  CAS  PubMed  Google Scholar 

  18. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E (2015) Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 126(9):1106–1117. https://doi.org/10.1182/blood-2014-12-618025

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, Liao WT, Ding YQ, Liang L (2019) CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18(1):91. https://doi.org/10.1186/s12943-019-1019-x

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shtam T, Samsonov R, Kamyshinsky R, Pantina R, Verlov N, Vasiliev A, Konevega AL, Malek AV (2017) Exosomes: some approaches to cancer diagnosis and therapy. AIP Conf Proc 1882:020066. https://doi.org/10.1063/1.5001645

    CrossRef  CAS  Google Scholar 

  21. Moon PG, Lee JE, Cho YE, Lee SJ, Chae YS, Jung JH, Kim IS, Park HY, Baek MC (2016) Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7(26):40189–40199. https://doi.org/10.18632/oncotarget.9561

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Khan S, Bennit HF, Turay D, Perez M, Mirshahidi S, Yuan Y, Wall NR (2014) Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14:176. https://doi.org/10.1186/1471-2407-14-176

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Huang T, Deng CX (2019) Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci 15(1):1–11. https://doi.org/10.7150/ijbs.27796

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, Su M, Pan H, Shen L, Xie D, Xie C (2017) Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 23(17):5311–5319. https://doi.org/10.1158/1078-0432.CCR-17-0577

    CrossRef  CAS  PubMed  Google Scholar 

  25. Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K, Schwarzenbach H (2014) Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5(20):9650–9663. https://doi.org/10.18632/oncotarget.2520

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng Z, Tang Y, Liu W, Zhu B, Wang L, Ren C (2017) GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 21(5):838–847. https://doi.org/10.1111/jcmm.12941

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93. https://doi.org/10.1016/j.canlet.2017.02.019

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li A, Zhang T, Zheng M, Liu Y, Chen Z (2017) Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol 10(1):175. https://doi.org/10.1186/s13045-017-0542-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hill A (2017) Exosomes and microvesicles. Humana Press, New York. https://doi.org/10.1007/978-1-4939-6728-5

    CrossRef  Google Scholar 

  30. Lane R, Korbie D, Trau M, Hill M (2017) Purification protocols for extracellular vesicles. In: Winaton P (ed) Extracellular vesicles: methods and protocols. Humana Press, New York

    Google Scholar 

  31. Yu LL, Zhu J, Liu JX, Jiang F, Ni WK, Qu LS, Ni RZ, Lu CH, Xiao MB (2018) A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int 2018:3634563. https://doi.org/10.1155/2018/3634563

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S, Singh AP (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep 9(1):5335. https://doi.org/10.1038/s41598-019-41800-2

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, Chiesi A, Salumets A, Peters M (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47(1-2):135–138. https://doi.org/10.1016/j.clinbiochem.2013.10.020

    CrossRef  CAS  PubMed  Google Scholar 

  34. Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, Soria CE, Oquin S, Bonebreak CM, Saracoglu E, Skog J, Kuo WP (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262. https://doi.org/10.1515/hsz-2013-0141

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3, Unit 3:22. https://doi.org/10.1002/0471143030.cb0322s30

  36. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209. https://doi.org/10.1007/978-1-4939-2550-6_15

    CrossRef  CAS  PubMed  Google Scholar 

  37. Li K, Wong DK, Hong KY, Raffai RL (2018) Cushioned-density gradient ultracentrifugation (C-DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol 1740:69–83. https://doi.org/10.1007/978-1-4939-7652-2_7

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.23430

  39. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Moller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. https://doi.org/10.3402/jev.v4.27031

    CrossRef  PubMed  Google Scholar 

  40. Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, Roura S, Borras FE (2019) Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci 76(12):2369–2382. https://doi.org/10.1007/s00018-019-03071-y

    CrossRef  CAS  PubMed  Google Scholar 

  41. Coumans FAW, Gool EL, Nieuwland R (2017) Bulk immunoassays for analysis of extracellular vesicles. Platelets 28(3):242–248. https://doi.org/10.1080/09537104.2016.1265926

    CrossRef  CAS  PubMed  Google Scholar 

  42. Lopez-Cobo S, Campos-Silva C, Moyano A, Oliveira-Rodriguez M, Paschen A, Yanez-Mo M, Blanco-Lopez MC, Vales-Gomez M (2018) Immunoassays for scarce tumour-antigens in exosomes: detection of the human NKG2D-Ligand, MICA, in tetraspanin-containing nanovesicles from melanoma. J Nanobiotechnol 16(1):47. https://doi.org/10.1186/s12951-018-0372-z

    CrossRef  CAS  Google Scholar 

  43. Rikkert LG, Nieuwland R, Terstappen L, Coumans FAW (2019) Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J Extracell Vesicles 8(1):1555419. https://doi.org/10.1080/20013078.2018.1555419

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. https://doi.org/10.3402/jev.v3.26913

    CrossRef  PubMed  Google Scholar 

  45. DeBlois RW, Bean CP, Wesley RKA (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61(2):323–335. https://doi.org/10.1016/0021-9797(77)90395-2

    CrossRef  CAS  Google Scholar 

  46. Ito T, Sun L, Crooks RM (2003) Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter. Anal Chem 75(10):2399–2406. https://doi.org/10.1021/ac034072v

    CrossRef  CAS  PubMed  Google Scholar 

  47. Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reategui E, Parekh HS, Saa P, Stassinopoulos A, Broom MF (2017) High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep 7(1):17479. https://doi.org/10.1038/s41598-017-14981-x

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson W, Kozak D, Coleman VA, Jamting AK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330. https://doi.org/10.1016/j.jcis.2013.02.030

    CrossRef  CAS  PubMed  Google Scholar 

  49. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ, Harrison P, Sargent IL (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7(6):780–788. https://doi.org/10.1016/j.nano.2011.04.003

    CrossRef  CAS  PubMed  Google Scholar 

  50. Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140(10):3318–3334. https://doi.org/10.1039/c4an02270j

    CrossRef  CAS  PubMed  Google Scholar 

  51. Willis GR, Kourembanas S, Mitsialis SA (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 4:63. https://doi.org/10.3389/fcvm.2017.00063

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gardiner C, Shaw M, Hole P, Smith J, Tannetta D, Redman CW, Sargent IL (2014) Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J Extracell Vesicles 3:25361. https://doi.org/10.3402/jev.v3.25361

    CrossRef  PubMed  Google Scholar 

  53. Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez-Fueyo A, Martinez-Llordella M (2018) Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol 9:1583. https://doi.org/10.3389/fimmu.2018.01583

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS, Dignat-George F, Workshop IS (2010) Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 8(11):2571–2574. https://doi.org/10.1111/j.1538-7836.2010.04047.x

    CrossRef  CAS  PubMed  Google Scholar 

  55. Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME (2019) Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering (Basel) 6(1). https://doi.org/10.3390/bioengineering6010007

  56. Akagi T, Ichiki T (2016) Evaluation of zeta-potential of individual exosomes secreted from biological cells using a microcapillary electrophoresis chip. In: Encyclopedia of biocolloid and biointerface science 2V set. Wiley, New York, pp 469–473. https://doi.org/10.1002/9781119075691.ch37

    CrossRef  Google Scholar 

  57. Campos-Silva C, Suarez H, Jara-Acevedo R, Linares-Espinos E, Martinez-Pineiro L, Yanez-Mo M, Vales-Gomez M (2019) High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep 9(1):2042. https://doi.org/10.1038/s41598-019-38516-8

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morales-Kastresana A, Telford B, Musich TA, McKinnon K, Clayborne C, Braig Z, Rosner A, Demberg T, Watson DC, Karpova TS, Freeman GJ, DeKruyff RH, Pavlakis GN, Terabe M, Robert-Guroff M, Berzofsky JA, Jones JC (2017) Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep 7(1):1878. https://doi.org/10.1038/s41598-017-01731-2

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mork M, Nielsen MH, Baek R, Jorgensen M, Pedersen S, Kristensen SR (2018) Postprandial increase in blood plasma levels of tissue factor-bearing (and other) microvesicles measured by flow cytometry: fact or artifact? TH Open 2(2):e147–e157. https://doi.org/10.1055/s-0038-1642021

    CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Nolan JP (2015) Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. Curr Protoc Cytom 73:13.14.1–13.1416. https://doi.org/10.1002/0471142956.cy1314s73

    CrossRef  Google Scholar 

  61. Chandler WL, Yeung W, Tait JF (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9(6):1216–1224. https://doi.org/10.1111/j.1538-7836.2011.04283.x

    CrossRef  CAS  PubMed  Google Scholar 

  62. van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F, ISTH-SSC-VB Working Group (2018) Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost 16(6):1236–1245. https://doi.org/10.1111/jth.14009

    CrossRef  PubMed  Google Scholar 

  63. Alkhatatbeh MJ, Enjeti AK, Baqar S, Ekinci EI, Liu D, Thorne RF, Lincz LF (2018) Strategies for enumeration of circulating microvesicles on a conventional flow cytometer: counting beads and scatter parameters. J Circ Biomark 7:1849454418766966. https://doi.org/10.1177/1849454418766966

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bazzill JD, Stronsky SM, Kalinyak LC, Ochyl LJ, Steffens JT, van Tongeren SA, Cooper CL, Moon JJ (2019) Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. Nanomedicine 18:414–425. https://doi.org/10.1016/j.nano.2018.11.005

    CrossRef  CAS  PubMed  Google Scholar 

  65. MacDonald JA, Bothun AM, Annis SN, Sheehan H, Ray S, Gao Y, Ivanov AR, Khrapko K, Tilly JL, Woods DC (2019) A nanoscale, multi-parametric flow cytometry-based platform to study mitochondrial heterogeneity and mitochondrial DNA dynamics. Commun Biol 2:258. https://doi.org/10.1038/s42003-019-0513-4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nolan JP, Stoner SA (2013) A trigger channel threshold artifact in nanoparticle analysis. Cytometry A 83(3):301–305. https://doi.org/10.1002/cyto.a.22255

    CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Gyorgy B, Szabo TG, Turiak L, Wright M, Herczeg P, Ledeczi Z, Kittel A, Polgar A, Toth K, Derfalvi B, Zelenak G, Borocz I, Carr B, Nagy G, Vekey K, Gay S, Falus A, Buzas EI (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 7(11):e49726. https://doi.org/10.1371/journal.pone.0049726

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mullier F, Bailly N, Chatelain C, Dogne JM, Chatelain B (2011) More on: calibration for the measurement of microparticles: needs, interests, and limitations of calibrated polystyrene beads for flow cytometry-based quantification of biological microparticles. J Thromb Haemost 9(8):1679–1681; author reply 1681–2. https://doi.org/10.1111/j.1538-7836.2011.04386.x

    CrossRef  CAS  PubMed  Google Scholar 

  69. Erdbrugger U, Lannigan J (2016) Analytical challenges of extracellular vesicle detection: a comparison of different techniques. Cytometry A 89(2):123–134. https://doi.org/10.1002/cyto.a.22795

    CrossRef  CAS  PubMed  Google Scholar 

  70. van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG (2012) Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 10(5):919–930. https://doi.org/10.1111/j.1538-7836.2012.04683.x

    CrossRef  CAS  PubMed  Google Scholar 

  71. Manda SV, Kataria Y, Tatireddy BR, Ramakrishnan B, Ratnam BG, Lath R, Ranjan A, Ray A (2018) Exosomes as a biomarker platform for detecting epidermal growth factor receptor-positive high-grade gliomas. J Neurosurg 128(4):1091–1101. https://doi.org/10.3171/2016.11.JNS161187

    CrossRef  CAS  PubMed  Google Scholar 

  72. Nolte-’t Hoen EN, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ, Bartelink W, Mastrobattista E, van Gaal EV, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720. https://doi.org/10.1016/j.nano.2011.09.006

    CrossRef  CAS  PubMed  Google Scholar 

  73. Middleton RC, Rogers RG, De Couto G, Tseliou E, Luther K, Holewinski R, Soetkamp D, Van Eyk JE, Antes TJ, Marban E (2018) Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. J Extracell Vesicles 7(1):1456888. https://doi.org/10.1080/20013078.2018.1456888

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  74. Erdbrugger U, Rudy CK, Etter ME, Dryden KA, Yeager M, Klibanov AL, Lannigan J (2014) Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A 85(9):756–770. https://doi.org/10.1002/cyto.a.22494

    CrossRef  CAS  PubMed  Google Scholar 

  75. Danielson KM, Estanislau J, Tigges J, Toxavidis V, Camacho V, Felton EJ, Khoory J, Kreimer S, Ivanov AR, Mantel PY, Jones J, Akuthota P, Das S, Ghiran I (2016) Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One 11(1):e0144678. https://doi.org/10.1371/journal.pone.0144678

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kovach MA, Singer BH, Newstead MW, Zeng X, Moore TA, White ES, Kunkel SL, Peters-Golden M, Standiford TJ (2016) IL-36gamma is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components. J Leukoc Biol 100(2):413–421. https://doi.org/10.1189/jlb.4A0315-087R

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bei Y, Xu T, Lv D, Yu P, Xu J, Che L, Das A, Tigges J, Toxavidis V, Ghiran I, Shah R, Li Y, Zhang Y, Das S, Xiao J (2017) Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol 112(4):38. https://doi.org/10.1007/s00395-017-0628-z

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  78. Das A, Valkov N, Salvador AM, Kur I, Ziegler O, Yeri A, Garcia FC, Lu S, Khamesra A, Xiao C, Rodosthenous R, Li G, Srinivasan S, Toxavidis V, Tigges J, Laurent LC, Momma S, Ghiran I, Das S (2019) Red blood cell-derived extracellular vesicles mediate intercellular communication in ischemic heart failure. Biorxiv. https://doi.org/10.1101/624841

  79. Choi D, Montermini L, Kim D-K, Meehan B, Roth FP, Rak J (2018) The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics 17(10):1948–1964. https://doi.org/10.1074/mcp.RA118.000644

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi D, Montermini L, Jeong H, Sharma S, Meehan B, Rak J (2019) Mapping subpopulations of cancer cell-derived extracellular vesicles and particles by nano-flow cytometry. ACS Nano 13(9):10499–10511. https://doi.org/10.1021/acsnano.9b04480

    CrossRef  CAS  PubMed  Google Scholar 

  81. Real JM, Ferreira LRP, Esteves GH, Koyama FC, Dias MVS, Bezerra-Neto JE, Cunha-Neto E, Machado FR, Salomao R, Azevedo LCP (2018) Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis? Crit Care 22(1):68. https://doi.org/10.1186/s13054-018-2003-3

    CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Wisgrill L, Lamm C, Hartmann J, Preissing F, Dragosits K, Bee A, Hell L, Thaler J, Ay C, Pabinger I, Berger A, Spittler A (2016) Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A 89(7):663–672. https://doi.org/10.1002/cyto.a.22892

    CrossRef  CAS  PubMed  Google Scholar 

  83. Wang Y, Melvin R, Bemis LT, Worrell GA, Wang H-L (2019) Programmable modulation for extracellular vesicles. Biorxiv. https://doi.org/10.1101/566448

  84. Chen C, Gao K, Lian H, Chen C, Yan X (2019) Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosens Bioelectron 131:185–192. https://doi.org/10.1016/j.bios.2019.02.016

    CrossRef  CAS  PubMed  Google Scholar 

  85. Inglis HC, Danesh A, Shah A, Lacroix J, Spinella PC, Norris PJ (2015) Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry A 87(11):1052–1063. https://doi.org/10.1002/cyto.a.22649

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lian H, He S, Chen C, Yan X (2019) Flow cytometric analysis of nanoscale biological particles and organelles. Annu Rev Anal Chem (Palo Alto Calif) 12(1):389–409. https://doi.org/10.1146/annurev-anchem-061318-115042

    CrossRef  CAS  Google Scholar 

  87. Zeng Y, Yao X, Liu X, He X, Li L, Liu X, Yan Z, Wu J, Fu BM (2019) Anti-angiogenesis triggers exosomes release from endothelial cells to promote tumor vasculogenesis. J Extracell Vesicles 8(1):1629865. https://doi.org/10.1080/20013078.2019.1629865

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  88. Groot Kormelink T, Arkesteijn GJ, Nauwelaers FA, van den Engh G, Nolte-’t Hoen EN, Wauben MH (2016) Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A 89(2):135–147. https://doi.org/10.1002/cyto.a.22644

    CrossRef  CAS  PubMed  Google Scholar 

  89. Konokhova AI, Chernova DN, Moskalensky AE, Strokotov DI, Yurkin MA, Chernyshev AV, Maltsev VP (2016) Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma. Cytometry A 89(2):159–168. https://doi.org/10.1002/cyto.a.22621

    CrossRef  CAS  PubMed  Google Scholar 

  90. Wood JCS, Hoffman RA (1998) Evaluating fluorescence sensitivity on flow cytometers: an overview. Cytometry 33(2):256–259. https://doi.org/10.1002/(sici)1097-0320(19981001)33:2<256::Aid-cyto22>3.0.Co;2-s

    CrossRef  CAS  PubMed  Google Scholar 

  91. Bigos M (2007) Separation index: an easy-to-use metric for evaluation of different configurations on the same flow cytometer. Curr Protoc Cytom Chapter 1:Unit1.21. https://doi.org/10.1002/0471142956.cy0121s40

  92. Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H, Haubitz M, Erdbruegger U (2010) Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 6:1125–1133. https://doi.org/10.2147/VHRM.S13236

    CrossRef  PubMed  PubMed Central  Google Scholar 

  93. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemova D, Ilkovics L, Hampl A, Crha I, Jandakova E, Minar L, Weinberger V, Bryja V (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4:25530. https://doi.org/10.3402/jev.v4.25530

    CrossRef  CAS  PubMed  Google Scholar 

  94. van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A, van Leeuwen TG, Nieuwland R (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12(7):1182–1192. https://doi.org/10.1111/jth.12602

    CrossRef  PubMed  Google Scholar 

  95. Welsh JA, Horak P, Wilkinson JS, Ford VJ, Jones JC, Smith D, Holloway JA, Englyst NA (2019) FCMPASS software aids extracellular vesicle light scatter standardization. Cytometry A. https://doi.org/10.1002/cyto.a.23782

  96. Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E (2016) Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci Rep 6:35928. https://doi.org/10.1038/srep35928

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Laboratorio Nacional de Citometría de Flujo at the Universidad Nacional Autónoma de México, México, for technical assistance in the acquisition and sorting of samples. We also thank Beckman Coulter for technical assistance with the use of the Cytoflex instrument. Work in GS lab was funded by Conacyt Frontiers of Science Project #87 and DGAPA/PAPIIT IV200220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soldevila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Pacheco, C., Bedoya-López, A., Olguín-Alor, R., Soldevila, G. (2021). Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols