Skip to main content

Near-infrared Deep Brain Stimulation in Living Mice

  • 1075 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2173)


Optogenetics has revolutionized the experimental interrogation of neural circuits in the past decade and holds potential for the treatment of neurological disorders. However, optogenetic stimulation of deep brain neurons requires the insertion of invasive optical fibers because the activating blue-green light cannot penetrate deep inside brain tissue. Here we describe a minimally invasive technique for the stimulation of deep brain neurons by transcranial near-infrared light (NIR), where upconversion nanoparticles (UCNPs) are used as optogenetic actuators to locally convert NIR into visible light. We detail the protocol to use locally injected UCNPs to stimulate dopamine neurons in the ventral tegmental area (VTA) of anesthetized mice by transcranial NIR.

Key words

  • Optogenetics
  • Near-infrared
  • Deep brain stimulation
  • Upconversion
  • Nanoparticles
  • Transcranial

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0755-8_4
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0755-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    CAS  CrossRef  Google Scholar 

  2. Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508

    CAS  CrossRef  Google Scholar 

  3. Hamblin MR (2016) Shining light on the head: photobiomodulation for brain disorders. BBA Clin 6:113–124

    CrossRef  Google Scholar 

  4. Chuong AS et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17(8):1123–1129

    CAS  CrossRef  Google Scholar 

  5. Klapoetke NC et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346

    CAS  CrossRef  Google Scholar 

  6. Rajasethupathy P et al (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659

    CAS  CrossRef  Google Scholar 

  7. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    CAS  CrossRef  Google Scholar 

  8. Zhang F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633

    CrossRef  Google Scholar 

  9. Chen S et al (2018) Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359(6376):679–684

    CAS  CrossRef  Google Scholar 

  10. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214

    CAS  CrossRef  Google Scholar 

  11. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10(11):924–936

    CAS  CrossRef  Google Scholar 

  12. Wanat MJ, Willuhn I, Clark JJ, Phillips PE (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2(2):195–213

    CAS  CrossRef  Google Scholar 

  13. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    CAS  CrossRef  Google Scholar 

  14. Gunaydin LA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535–1551

    CAS  CrossRef  Google Scholar 

Download references


This work was supported by Human Frontier Science Program Postdoctoral Fellowship (LT 000579/201) (S.C.), JSPS (Japan Society for the Promotion of Science) Postdoctoral Fellowship (16F16386) (S.C.), RIKEN Special Postdoctoral Researchers Program (S.C.), Grant-in-Aid for Young Scientists from MEXT (the Ministry of Education, Culture, Sports, Science and Technology of Japan) (16K18373, 18K14857) (S.C.), RIKEN Incentive Research Project Grant for Individual Germinating Research (S.C.), Narishige Neuroscience Research Foundation Grant (S.C.), and Nakatani Foundation Grant Program (S.C.).

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Chen, S. (2020). Near-infrared Deep Brain Stimulation in Living Mice . In: Niopek, D. (eds) Photoswitching Proteins . Methods in Molecular Biology, vol 2173. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0754-1

  • Online ISBN: 978-1-0716-0755-8

  • eBook Packages: Springer Protocols